World Description Language - A logical
Language for agent-based Systems and
Games

Bachelor Thesis

Freie Universitat Berlin

Fachbereich fiir Mathematik und Informatik

Author:
Johannes Kulick

Advisor:
Dr. Marco Block

Supervisor:
Prof. Dr. Raul Rojas

September 21, 2009

Eidesstattliche Erklarung

Ich erklére an Eides statt, dass ich die vorliegende Bachelorarbeit selbstindig und ohne fremde
Hilfe verfasst habe. Ich habe dazu keine weiteren als die angegebenen Hilfsmittel benutzt und
die aus anderen Quellen entnommenen Stellen als solche gekennzeichnet.

Berlin, September 21, 2009

Summary

General Game Playing is a part of Artifical Intelligence (AI) research, which handles Als
playing more than one game. Traditional Computer Game Playing programs were only able
to play a single game, where human beings are able to understand hundreds of games. To
create Als, which can play more than one game a formal language is needed, in which game
rules can be defined. Many approaches for such a language have appeared, but all of them do
not cover all games.

The most accepted language in this domain is the Game Description Language (GDL). To-
day there are many Als playing GDL games at a notable competitive level. Nevertheless the
GDL only covers deterministic, round-based games with complete information.

This thesis discusses earlier game languages and then introduces an extension to the GDL,
the World Description Language (WDL), which achieves the following goals

« random events are possible in WDL games (already published by the author in [1])
« incomplete information games could be described in WDL
 the WDL is the first language to describe realtime games

« alibrary system for faster development of games is added

All these features are achieved while keeping the WDL profoundly compatible to the GDL.
A framework for the WDL is published under the GNU General Public License at [31].
The contributions of this thesis are:

» An overview over former general game playing languages
« The extension of the GDL with the above mentioned features

o The development of an extension to the Game Controller, which can handle these new
features

« The development of games in WDL, to show the new features

Contents

Introduction and Motivation

1.1 Structureofthe Thesis
Theory and Related Work

2.1 Expertsystems and Uncertainty
2.2 Early Approaches to General Game Playing
2.3 Game Description Language oL
24 CurrentResearch L

Extensions to the GDL: The World Description Language

3.1 TheNeedofan Extension
3.2 Probability Based Moves: The random relation
3.3 Incomplete Information: The visible relation
3.4 Realtime Systems: The realtime axiom
3.5 Library functionality: The include relation

Experimental Results and Discussion

41 Backgammon
42 BlackJack
43 ChessClock. e
4.4 Discussion e

Conclusion and Future Work

5.1 Maskin Leke
52 Verden e
References

A Games in WDL

A1 ThelLibrary L
A1l Dicing
A12 Carddeck
A.1.3 Arithmetic Functionality

A2 Backgammon

A3 BlackJack

10
10
12
16
19

22
22
24
27
28
30

33
33
35
37
38

40
40
41

42

Acknowledgments

I would like to thank Prof. Dr. Radl Rojas for accepting this thesis. His lectures gave me
a new perspective to computer science and mathematics and lead me to game programming
and artificial intelligence.

Special thanks go to my advisor Dr. Marco Block, who supported me in every way it was
possible. I can not imagine a better advisor.

Furthermore I thank the workgroups artificial intelligence and game programming for great
working conditions.

I thank Benjamin Bortfeldt for interesting ideas and discussions about the “World Descrip-
tion Language” and Stefan Otte for his English skills.

Thanks go also to the computational logic workgroup of the Technische Universtét Dresden
for publishing their GDL framework under the terms of the GPL, which makes it possible to
extend it.

Chapter 1

Introduction and Motivation

Since the beginning of computer science game-playing computer programs were in focus of
researchers. From Konrad Zuses very first Chess-program in the Plankalkiil [14] to solving
the sophisticated game of checkers [7] much work was applied.

For a long period Chess was the Drosophila melanogaster of artificial intelligence (Al)
research. One very notable event was the victory of the computer program “Deep Blue” over
the officiating Chess world champion Kasparov in 1996 [15]. Since then many better programs
were developed and won against grand-masters. Although most of these engines have their
strength from human expert knowledge, machine learning algorithms were tested in Chess
engines as well [2].

Because computer Chess programs now are stronger than every human player, other games
have been more focused recently. For the complex game of Go typical Chess-concepts were
quite unsuccessful, so Monte Carlo methods were developed and applied [17]. Today Go
programs play at a notable competitive level.

Another example for newer Al research is Poker, which introduces many new concepts in
comparison to Chess and Go: Multiplayer, incomplete information and probability. Als for
poker do not only have to use their own knowledge, but have to model the opponents to find
successfully strategies [11].

Unfortunately all these programs are only capable of playing a single type of games. A
grand-master Chess engine refuses to play Tic-Tac-Toe. While human beings play hundreds
of games, computer programs are highly limited in their capabilities.

A new challenge for Al research is an Al which can play all games. If such an Al was
available, not only strategies for classical games could be created but also solutions for abstract
or game-theoretic games, as they are described by von Neumann and Morgenstern [30], could
be found. Even economic or biological systems could be simulated and general Al concepts
could be developed.

At the workgroup game-programming of the Freie Universitat Berlin the Al framework
jGameAl was developed [4]. It focuses on machine learning and search algorithms, which
were implemented generically, to fit almost every game. Unfortunately every new games
has to be implemented separately and the core of an Al the evaluation function, has to be
generated by hand for each game.

Since game analysis is mainly made by human experts only, Als does not really understand
the game, but win only through computing power [4, 23]. To automatically analyze games

’Year\ Program \ Workgroup ‘

2005 | ClunePlayer University of California
2006 | Fluxplayer | Technische Universitat Dresden
2007 | CADIAPIlayer Reykjavik University
2008 | CADIAPIlayer Reykjavik University
2009 | ary-distant Université Paris VIII

Table 1.1: World Champions of the AAAI-Competition since 2005.

and build general Als, a machine-readable description of game rules must be available. A
formal language for game descriptions is needed.

Several approaches to create such a language have been made in the last years [23, 8, 9].
The most accepted one is the “Game Description Language” (GDL) [3]. Many successful
players have been developed to play in GDL described games, and a world championship is
held during the AAAI conference each year at the GIGA workshop. In table 1.1 the world
champions since 2005 are listed. At the Freie Universitat Berlin is a group, which develops
the GDL player Maskin Leke (Norwegian for “playing machine”) [31].

Nevertheless the GDL has some limitations in describing games. Random events can not
described, so many classical games as well as most complex systems can not be written in
GDL. Incomplete information is also not representable. Most economic games therefore can
not be described. And for biological systems or many video games realtime capabilities are
needed.

In this thesis an extension to the GDL is introduced, which makes it possible to describe all
these features, while keeping all language construct intact.

1.1 Structure of the Thesis

In Chapter 2 different general game playing approaches and their advantages and disadvan-
tages are described. Additionally related approaches to the topics of the world description
language are described. The GDL syntax and semantics are discussed detailed.

In Chapter 3 the new language “World Description Language” (WDL) is introduced as
an extension to the “Game Description Language”. All new concepts are described and the
syntax and semantics of language constructs are introduced.

After that some examples of games and systems in the WDL are described in Chapter 4.
There is shown which is possible with the new constructs by showing different problems and
solutions.

At the end in Chapter 5 both possible Als as well as further language extensions are dis-
cussed.

Chapter 2
Theory and Related Work

In this chapter the development of General Game Playing (GGP) and related research is de-
scribed in chronological order. It starts with expertsystems, which are problem solving pro-
grams and have some similar problems as game description languages. Then early approaches
like metagame, which reinvented the idea of GGP, are introduced. After that the GDL, the
language to extend, is described in detail. And at the end of the chapter the current state of
research in general game playing languages is discussed.

2.1 Expertsystems and Uncertainty

In the 1950’s appeared the first expertsystems to solve general problems. Although most of
them were specialized to a single topic, the inference machine concepts were applicable to
a wider range of domains. Expertsystems are equipped with knowledge from experts about
a specific topic. They are not limited to reproduce this knowledge, but also to infer logical
conclusions from the given knowledge-base. Expertsystems often use logical languages like
Prolog and reasoning, like many current general game playing languages do [10].

One problem is, that in many domains, where expertsystems are applied, statements are
not true or false, but afflicted with some uncertainty. Human experts are not always sure
about their knowledge, but phrase it often like: “If the car does not start and the radio works,
in 90% of the cases the problem is an empty fuel tank.”

Expertsystems need stochastic functionality to describe such knowledge. But since most
logical inference machines do not support stochastic elements, an own solution must be im-
plemented. A common way to do that is to apply uncertainty factors to facts and rules.

One popular system using this concept was the medical expertsystem MYCIN written in
LISP. It was developed at the University of Stanford in 1972 [27]. Disease symptoms are
typical examples of uncertain facts. The patient and the doctor may be not certain about
them and the connection of them and the symptoms may not lead to a clear diagnosis.

Facts and rules can be provided with certainty factors. They lie in [—100, 100], where —100
is a probability p(e) = 0 of an event e and 100 is p(e) = 1. In MYCIN these certainty factors
are added to statements with a starting cf followed by the actual certainty factor.

Consider a simple disease recognition system. It has the rule, that a person who has fever
and headache, this person has flu with a probability of 95% (certainty factor 90). Now a person
has fever, which can be tested with a fever-thermometer, so this has the certainty factor 100.

10

Figure 2.1: Certainty factors are computed locally and the heuristic values are propagated
through the decision tree. Errors made by the heuristic persist and accumulate.

But he is not sure about the intensity of his headache, so this is considered as 90% headache,
which is a certainty factor of 80. Such facts and rules look like the following simple system:

headache cf 80
fever cf 100

Rule 1
if headache and fever
then disease is flu cf 90

This uncertainty factors must then be propagated through the search of the inference ma-
chine and combined in a proper way. Because there is no knowledge about the way in the
decision tree in MYCIN these combination is computed locally (see figure 2.1) with the fol-
lowing rules, which gives good empirical results.

OFrule . CFpremise
100
If there are more than one rule, which must be combined, MYCIN uses the function

CF =

X +Y(100 - X) forX >0,Y >0
CPX)Y) = {X+ ey for X <OorY <0

—CF(-X,-Y) forX<0,Y <0

to compute the uncertainty factor. These values does not meet with the correct probability
values, which are

p(X,Y) = p(X) + (1 = p(X)) - p(Y).
Especially negative parameters can lead to wrong values. The second rule

X+Y

CRXY) = XD

11

is asymmetric (see figure 2.2). So for the inversion of a rule the inequality CF (Y, X) #
CF(X,Y) is valid.
If we consider the example

Rule 1
if fever
then disease is flu cf 50

Rule 2
if pustule
then disease is flu cf -80

the certainty factor is computed with rule number two, which is

—80
1 — min(|50], | — 80])
80
= 50+
T
~ 51.63

CFp(50,—80) = 50 +

While the inversion leads to the different result

50
1 — min(| — 80, |50])

49
~ —81

CFru(—80,50) = —80+

These locally computed heuristic probability values are used in the following conclusions and
possible errors will be propagated through the decision tree and accumulated. In games with
random events are correct values needed to get fair results, so this system is inappropriate for
GGP systems.

2.2 Early Approaches to General Game Playing

Already in the 1960’s Jacques Pitrat wrote the first general game playing program [28]. He
described games as algorithms. One algorithm which enumerates all legal moves and one
algorithm which indicates how to win.

His language has control statements like other programming languages (arithmetic state-
ments, if, goto, etc.) as well as game specific statements. These are the result statements,
which indicates a victory of a player or draw, and the move statement, which describes legal
moves. Four types of moves are possible: Moving a piece from a field to another, capturing a
piece, adding a piece to a field and replacing a piece by another piece.

12

Listing 2.1 American Checkers as SCL-Game in Metagame format (listing from [23])

GAME american_checkers
GOALS stalemate opponent
BOARD_SIZE 8BYS8
BOARD_TYPE planar
PROMOTE_RANK 8

SETUP man AT {{1.1){

3.
(G.2) (8,
CONSTRAINTS must_capture

DEFINE man
MOVING
MOVEMENT
LEAP
{1.1) SYMMETRY {side}
END MOVEMENT
END MOVING
CAPTURING
CAPTURE
BY {hop}
TYPE [{opponent} any_piece]
EFFECT remove
MOVEMENT
HOP BEFORE [X = 0]
OVER [X=1]
AFTER [X=0]

HOP_OVER [{opponent} any_piece]

{1.1) SYMMETRY {side}
END MOVEMENT

END CAPTURE
END CAPTURING
PROMOTING

PROMOTE_TO king
END PROMOTING
CONSTRAINTS continue_captures

END DEFINE

END GAME.

1)
2)

)

1
3)

=1
[

(1. 3.
DEFINE king
MOVING
MOVEMENT
LEAP
{1.1) SYMMETRY {forward side}
END MOVEMENT
END MOVING
CAPTURING
CAPTURE
BY {hop}
TYPE [{opponent} any_piece]
EFFECT remove
MOVEMENT
HOP BEFORE [X = 0]
OVER [X=1]
AFTER [X=0]

{1.1) SYMMETRY {forward side}
END MOVEMENT
END CAPTURE
END CAPTURING
CONSTRAINTS continue_captures
END DEFINE

HOP_OVER [{opponent} any _piece]

13

Figure 2.2: The left tree results in a certainty factor of —82 which correspond with the prob-
ability p(e) = 0.09. The right tree emerges from swapping the inner nodes, but
results in the certainty factor of 52, which correspond with the probability of
p(e) = 0.76. The MYCIN rules are asymmetric and both values does not match
with the correct probability p(e) = 0.775.

His program was able to play several board games, including Chess, Tic-Tac-Toe and go-
moku. After this first general game playing program a long time only game-specific Als were
developed.

The first modern general-game-playing approach was Barney Pells Metagame [24]. He
specified a specific class of games, he called symmetric Chess-like (SCL) games.

SCL describes board-games on a rectangular board. Only two-player games can be de-
scribed. The fields on the board are ordered like a Chess or checkers board but not restricted
in their size. Even non-quadratic boards are allowed. A board can be represented by a 2-
dimensional matrix. It is possible to create games, where pieces can move from the right side
of the board directly to the left side, like the board is projected to a cylinder.

All SCL-games are symmetric, which means that both players have the same pieces and
the same rules. So every rule must have an inversion. All rules can specified for one player
only, and the inversion implies the rule for the opponent.

The rules in the Metagame-format are described by describing legal actions of the different
pieces. There are movement actions and capturing actions.

Movements are defined by their direction and symmetry constraints. Even the two possible
types of movement hop and ride can be specified. Hop means a move does not affect the fields
between start- and endpoint and ride means that a piece moves over every field between start-
and endpoint. Symmetry-constraints can simple mirror moves. For example a rook in Chess
can move symmetrically to the left and the right, forward and backward. This is defined by
(from [23])

movement

ride

<1,0> symmetry all_symmetry
end movement

14

Movements can also be defined by disjunctions of other movements. This can for example be
done for movements of a queen in Chess, which is the disjunction of rook and bishop moves.

Captures are similar to movements but have an effect to other pieces, while movements
only affect themselves. Capture moves can differ from normal moves. There are three types of
capturing in Metagame: clubbing, hopping and retrieval. Clubbing is the normal Chess kind
of captioning opponent pieces. A piece moves to an opponent piece and thus it is removed.
Hopping is the capturing type in checkers. A piece hops over another piece to capture it.
Retrieval is quite uncommon. A piece moves away from another one to capture it.

Capturing can have different effects on the captured piece. It can be simply removed or it
is possessed by either the player who captures the piece or the opponent. If it is possessed
by one player this player can bring the piece back to the game in a later turn at any empty
field. Capturing can be compulsory, as in many checkers variants. Additionally continued
capturing can be allowed, this allows several pieces to be captured in one turn.

The last concept in Metagame is promoting. When a piece reaches the promoting territory
it is replaced by another piece. In Chess for example a pawn can be replaced by any other
piece when it reaches the last row.

Start positions and winning conditions in metagame are described by global constraints.
Besides simple winning conditions, complex compound goals can be defined.

A complete game in Metagame-format is shown in listing 2.1. Although Metagame was an
important step, it covers a very small set of games. Therefore other languages were developed.

A similar class of games as Metagame can be described with Multigame [19]. The orig-
inal implementation gets an game description and compiles it to a ANSI-C program, which
includes an evaluation function. This program gets a board state as input and offers the best
evaluated move as output.

Since Multigame has the above mentioned input scheme no start position can be defined.
The game rules are described by legal moves. The description is very close to the action a
human being does. A virtual hand picks pieces up, moves them around and puts them back
to the board. The rules declare in which directions this hand may move and whether it can
hop over other pieces or not. Longer moves are repeatings of the origin move.

A main clause is the start point, where all moves are listed. Even win or loose conditions are
described here. A try statement can be used, similar to if-clauses in descriptive languages,
to detect certain patterns, which make moves legal or are winning situations for example.
Several other language constructs can be used to implement complex game situations.

The main introduction of Multigame is its capability of one-player and multiplayer games.
The number of players in Multigame is in contrast to Metagame not limited to a specific
number. This introduces a big range of games, but nevertheless only a small part of all games
can be described. Listing 2.2 shows a complete game in the Multigame format.

In the late 1990’s the commercial product Zillions of Games was released [35]. It is a game
engine which is capable of playing several games described in a LISP-like language. It can
handle not only board games, but games must be reducible to board games. It includes a
graphical frontend for its games. Thus the description of the games can have graphical options.
There is also an API for Al engines, where different engines can be plugged-in. Its own engine
is not published.

15

Listing 2.2 The game Tic-Tac-Toe in the Multigame format (listing from [21])

dimension (3,3)

pieces
{
mark X0
}
main = try new_mark else draw.
new_mark = find empty field,
replace by own mark,
try [test three_in_a_row, win J.
three_in_a_row = find own mark,

alldir,
repeat 2 times [step, points at own mark].

2.3 Game Description Language

The most accepted language nowadays comes from the University of Stanford, where a team
around Michael Genesereth developed the Game Description Language in 2005 [3]. A lot of
Als for it were made and compete against each other at the yearly hold GIGA workshop [34].

The GDL is a logical language, which means, that rules of games are described by logical im-
plications, and legal moves or winning situations are found by reasoning. Logical languages
are often used in expertsystems (see section 2.1) .

The syntax of the GDL is in the Knowledge Interchange Format (KIF) prefix notation, which
is meant to be an machine-readable interchange format for knowledge [25]. In GDL there are
terms, relations and implications. A term is either a variable or an atom, which is an object
constant. Variables in GDL start with an question mark, followed by a string. Atoms are
simply strings.

atom
?variable

A relation consists of a functor, which we can consider as the name of the relation, and n
parameters, which follow the functor.

functor p1 p2 ... pn
Each parameter can either be a term or a relation. If it is a relation it has to be in brackets.
functor1 p1 (functor2 p2a p2b) p3

Implications have a head, which is the conclusion of it, and a body holding preconditions. If
all preconditions are true, the conclusion becomes true. The implication symbol <= is written
prefix.

16

Relation \ Functionality

role <player> defines the number of players and their names

init <state> describes the initial game state

true <state> checks whether facts are in the game state or not

does <player> <move> describes the last actions done

next <state> describes the game state in the next turn, depending
on preconditions

legal <player> <move> defines legal moves at a specific situation, depending
on preconditions

goal <player> <value> rates specific situations with values between 0 (worst)
and 100 (best)

terminal defines terminal states in the game state

Table 2.1: List of reserved relations in the GDL

<= (head_functor p1 p2 ... pn)
(body1 p1 ... pn)
(body2 p1 ... pn)
(bodyn p1 ... pn)

A relation is true if it is either reasoned through an implication or it is a defined as a constant
somewhere in the source code. Variables get unificated by a backtracking system similar to
Prologs inference machine [16].

To create games in GDL there are the eight predefined, game related relations role, init,
true, does, next, legal, goal and terminal. Their semantics are shortly described in table
2.1.

In the GDL framework there is a difference between facts which are globally true, and
which are true in the game state. Things like arithmetic functions can be defined globally,
they stay true the whole time a game is played. However, they cannot be changed during
run-time.

At the other hand everything which is subject of change during a game must reside in the
game state. That can be positions of pieces, the current turn number or the score a player has.
Each turn the game state is reset. All facts that should consist must copied from the previous
turn state with the next relation. All relations affect only the game state and never the global
scope, as this is not changeable.

These predefined relations can be combined to create complex games. An excerpt can be
seen in listing 2.3. It shows the only legal move in Tic-Tac-Toe, which is marking a blank cell.

Since all these relations are deterministic and does not have access to extern devices or
files, no random events can be simulated with the GDL.

The GDL also has a communication protocol, which manages the transmission of moves
between the players. To ensure all players only perform legal moves and do not excess their

17

Listing 2.3 An excerpt of Tic-Tac-Toe as a GDL game. This are the preconditions and the
result of a move. Note that all relations not mentioned in table 2.1 have to be defined some-
where else in the source code (listing from [3]).

(<= (legal ?player (mark ?x ?y))
(true (cell ?x ?y b))
(true (control ?player))

(<= (next (cell ?x ?y ?player))
(does ?player (mark ?x ?y))

(<= (next (cell ?x ?y b))
(does ?player (mark ?m ?n))
(true (cell ?x ?y b))
(distinctCell ?x ?y ?m ?n)

playtime an infrastructure for managing a game must be available. In GDL the Game Master
or the Game Controller (depending on which implementation is used) provides this [32, 33].

It sends the start message to all players, which contains the description of the game in GDL,
a unique match ID to identify a specific game, if more than one game is handled by a player
or the Game Controller (GC), and two clock values. On the one hand the startclock, which
defines the time until the game starts. The players can use this time to prepare themselves. On
the other hand the playclock. This is the time a player has for each move. The start messages
has the following format.

(START <MATCHID> <ROLE> <DESCRIPTION> <STARTCLOCK> <PLAYCLOCK>)

After each move the GC sends the played moves to the players. They must compute the
current game state by themselves with the corresponding GDL description. The moves are in
the same order as the player roles appear in the GDL description. Since each player performs
exactly one move each turn, this order makes the moves in the play message unambiguous.
The message format is the following.

(PLAY <MATCHID> (<MOVE1> <MOVE2> ... <MOVEn>))

If a player exceeds its play time or does not return a legal move, the GC chooses a random
move for that player. If a terminal state is reached the keyword PLAY in the message is replaced
by STOP. All players can now compute the final state and their goal values.

With this communication architecture no incomplete information is possible. Each move is
send to every player, which has the complete rule description. Also realtime games can not be
described, since the GC defines the turn length and sends random moves if one player does
not react.

18

Figure 2.3: The TD-Prob™(\) learning algorithm, an reinforcement learning variant intro-
duced for jGameAl, can handle both multiplayer games and non-deterministic
games. Nevertheless it needs an evaluation function J to reason about the pay-
off of a specific game-state (figure from [4]).

2.4 Current Research

The Al framework jGameAlI was developed at the Freie Universitat Berlin [4]. It abstracts
from specific games in a way that it has generic search algorithms for the game tree. It uses
an MiniMax Version with a lot of enhancements. Multiplayer and non-deterministic games
can be handled by its search and pruning concepts are applied. Also generic machine learning
algorithms are implemented in this framework to get better results (see figure 2.3). In jGameAl
all game rules must implemented in Java. So no game-specific language is available and games
can not be added by runtime.

To implement an Al for a new game with the jGameAlI framework an evaluation function
is needed, to give the search algorithm an indication for the payback of the current position.
Although this sound easy, the evaluation function is the core of an AL Only generic func-
tionality, used by almost all game Als can be used from the framework.

A relative new approach for general game playing is the Extended General Gaming Model
(EGGM) [8]. It uses the scripting language Python as base to create a framework for im-
plementing games. It contains a set of classes, which are game-related. Its object-oriented
approach causes quite structured source-code. Since it offers a graphical frontend to the user,
game descriptions can have graphical options.

19

In the EGGM games consist of two things, namely equipment and rules. All physical things
in a game are equipments, such as pieces, dices as well as players. Rules describe how the
equipments interact with each other, mainly the players with the other equipments.

Every equipment is hold by a table. Areas build graphs, where equipment can be placed.
The most important equipments are elements. They describe typical game-pieces, such as
cards, boards, pieces, etc. Every element can have different attributes, to identify colors,
types or values. Equipment can be stored in assortments, to create for example card decks.

There are two special equipments: dices and score. Dices are used to generate random
events and score holds point-values for the players.

Rules are the second thing in EGGM, which defines a game. They define the number of
players in a game and the order of their turns. The initial state of all equipments is arranged in
the rules as well as the winning conditions. And of course the rules explain the legal moves.

There are several move types, which can be used in EGGM. They can move pieces from
one position to another, add or remove attributes to equipment, shuffle or sort assortments or
simply do nothing. These simple moves can be combined to create complex move variants.

The EGGM is implemented in Python and all games developed for it are in fact Python
programs. So the EGGM is not a real game language, but a python framework to implement
games. Also the Als are integrated in the framework and have to be implemented in Python,
because they have to call Python methods to interact with the game engine.

Many of the described features of the EGGM were not implemented at publishing date and
the framework is not available yet.

Currently the most comprehensive language to describe games is the Regular Game Lan-
guage (RGL) [9]. It can handle games with complete or incomplete information and it is
capable of random events. The RGL defines the game with logical predicates like the GDL,
but uses the Prolog syntax instead of the KIF notation [16]. Prolog uses an infix notation for
the implications and can have infix functions as well.

A game consists of facts and rules as in GDL, but RGL can additionally handle lists. There
are a lot of predefined relations, with some only being shorthanded versions of complex tasks.

In RGL there are pieces, which describe the game equipment. Pieces can have two sides
to realize things like playing cards, where opponents can see that there are cards, and how
many cards there are, but not which colors or values they have. All things in RGL are pieces,
which are placed on a board. Even in card games or similar, things are placed on a board, to
have a specific position to access them. A board is represented by a graph. A board consisting
of edges and nodes can simply be initialized in RGL with the statement

grid(n,m).

Where n and m are the numbers of fields in the width and the height of the board. This is
the shorthand version of initializing all edges and nodes by hand.

The initial state of a game is defined similar to the GDL with the init relation. For incom-
plete information the pieces of the game has an visibility attribute. For the initial visibility
there is the relation initVisible. It is possible to apply different visibility to the back and
front of pieces.

20

Listing 2.4 A short excerpt of the game Tic-Tac-Toe in the RGL (listing from [9]).

moveprecon(Player,place(Piece,To)):-
whoseturn(Player),
owner (Player,Piece),
onboard(To),
not(pieceAt(_,To)).

moveresult(Player,place(Piece,To),
L
place(Piece,To),
reveal(all,Piece,To,front),
replace(Player,whoseturn,Next),
reveal (all,Next,whoseturn, front)
]
) 1T
nextPlayer (Player,Next).

Random events are handled by the roll and the shuffle statements. While roll puts
a randomly chosen piece on a specific position on the board, shuffle takes all pieces on a
specific node and brings them in a new order.

A very important thing in games are the legal actions. They are defined by the two rela-
tions moveprecon and moveresult. The moveprecon statement describes the preconditions
which must be met to allow this move. The moveresult statement defines what happens by
proceeding a move. These results can differ depending on some conditions.

The move results can be either visibility attribute changes or one of the following for move
relations: place, remove, move, replace. Where move and replace are only shorthand ver-
sions of combinations of the other two. To place a piece on a specific position, the place
relation is used, to remove it, the remove relation is used. The move statement is removing
a piece from position a and placing it on position b and replace is removing a piece from a
position and placing another piece there instead of it.

All attributes are hidden by default. This is important to create games with incomplete
information. To make them visible to one ore more players, the reveal statement is used.

An excerpt of a game can be seen in listing 2.4.

21

Chapter 3

Extensions to the GDL: The World
Description Language

In the last chapter current available game description languages were introduces. In this
chapter it will be shown, that there is no single language which is capable of all needed
features to describe nearly all games. Then there is an extension to the former described
GDL introduced, which can handle a much bigger range of games, while being compatible
to it but as short as possible. Each new feature is described in detail. The WorldController,
which handles the new language, can be found at the Website of the GGP group of the Freie
Universitét Berlin [31].

3.1 The Need of an Extension

Although there are many languages to describe games, as introduced in chapter 2, all of them
lack some features to match all requirements or have several preconditions to games, that
limit the number of describable games (see table 3.1).

The most important missed feature are random events. There are hundreds of games which
relate on random events, both classical board or card games and abstract games. Describing
games without having the ability to create random events during the game play is mostly
not possible. Interestingly there are not much languages, which provide this feature or needs
workarounds like Zillions of Games, which needs an invisible player, who plays random
moves. Even in the EGGM, which is meant to have random events, they are not implement
yet [8]. So this very usual game feature is up to now only available in the RGL.

Associated with random events is incomplete information, which only makes sense if there
are random events available. Otherwise if all events are deterministic a player could re-
member all moves and therefore compute the current state. Especially computer players are
capable of this possibility. No language except the RGL and EGGM, which has without ran-
dom events no reasonable use of it, offers incomplete information. Nearly all card games and
lots of board games need incomplete information.

Akin to incomplete information is communication, which is to set information only read-
able by a special group of other players including of course all. Communication is the base for
cooperation in games. Only if players could communicate which each other they can work
together. Communication can also used to fool other players and take advantage of that. As

22

% Z
1{3& 1706 _ O/‘O /:)s" (@,) (9?,) (v)) !9%2
6%/ do@/ @/’) % Q‘? 60(/59 60(:9 ?50

Properties %\ % \& \ % \% \% \% \°&
Singleplayer games X X X[X[X]X
Multiplayer games Dl x I x x [x| x| x
Complete information P P P X | X P X
Incomplete information X | X X
Random events i X X X
Roundbased games P P P P P P X
Different players at the same round X X] X[x| X
Realtime X
Communication X
Visualization X | X s
No strict contextspecialization X X
Framework available 3 X | X

X - The language has this feature

P - This property is a precondition

)Metagame can only handle two player games

2)Random events in Zillions of Games can be simulated by an invisible player who play
random moves

3)Zillions of Games is a commercial framework

Y)Games can be visualized with the help of stylesheets

Table 3.1: The properties of the different description languages.

communication is one pillar of human intelligence and strategy Als should be able to utilize
it as well.

When having these features available, most classic games could be described in a language.
Nevertheless there are much more games imaginable as for example video-games, biological
systems or economic systems. All these games are not based on rounds, but are realtime
games. This means, that players are not treated to do a move, but can decide do act whenever
they want to, in regard to the rules of the game. None of the described languages can model
realtime games at all.

As shown there is no language available today, which can describe nearly all games. But
there are some languages which match a lot of requirements. So it is reasonable to not imple-
ment a complete new language, but extend an existing one. Although the RGL seems to be
the most complete language (considering the not implemented EGGM features), it has some
major disadvantages.

The RGL as other game languages, too, is very specific to a concrete range of games. Typical
game concepts are implemented as language features instead of implementing a library func-
tionality and then offering a standard library with these features. So these languages do not
really have a clean design, which offers a small set of needed functionality and the possibility
of extending the game through out libraries. For example the statements roll and shuffle
are simply reducible to the concept of random events, but both are language keywords.

The GDL does not implement so many game features, but is designed to be clear and small.
However, it has no library functionality as it is known from programming languages like Java
or C++, which was one reason they became as famous as they are today. Nevertheless the
GDL is widely used nowadays. There is a big community developing Als for the GDL, which
makes it the best candidate to extend.

Another advantage of the GDL is the open source infrastructure, which is available online
and a good starting point for extending the language [32, 33].

Therefore the GDL was chosen to extend to the new describing language, the World De-
scription Language (WDL). It is capable of describing all games known by the author as well
as a lot of agent based systems like biological systems. A simple library functionality is added
to get the possibility of generating games more easily.

3.2 Probability Based Moves: The random relation

As discussed above the most important extension in the WDL is the ability of generating
random events. Thereby the need of an abstraction of concrete game concepts such as dicing
or shuffling is desirable, because they can be described in a library later. They are simply
reducible to the basic concept of a random event. The WDL therefore needs a concept of
random events.

It is implemented as a discrete random variable, which can enter several defined state,
describing the events, with defined probabilities. These probabilities have to be dynamically
adaptable, since there are several possibilities of changing probabilities during a game, for
example dealing a card deck.

24

p=0.675 p=0.075 p=0.025

Figure 3.1: Uncertainty within rules or facts can be expressed with random events. The rules
R1 and R2 are stochastically independent. Therefore the probability of the con-
clusion is p(e) = 0.1+0.9-0.75 = 0.775, as shown on the right. The WDL uses
a probability tree like the one on the left hand side. The sum is Y p(e) = 0.775,
which is the correct value.

To generate random events, the relation random with three parameters is introduced. Its
syntax is the following:

random <name> <value> <event>

The first parameter is a term, which names the random variable. All n events, which can hap-
pen according to this random event, are attached to the same random variable and therefore
have to get the same name.

The second parameter is a positive integer v, (including zero) defining the probability of
the event e. Actually v, is not the probability. The probability of the event e, named p(e) is
computed as the usual quotient

Ve

p(e) o

The third parameter is a WDL-expression describing the event e, which occurs depending
on a random experiment.

The unification of the random variable happens (pseudo-)randomly. Because all players
have to get the same event and to avoid cheating from players, the unification has to take
place at a central, not player-driven system. For that reason random variables do not get a
KIF-conform variable name with a starting question mark, but are atoms.

Since the only exchange of information in WDL-games take place while carrying move-
information, there is the following restriction. A random variable can only occur in its defi-

25

Listing 3.1 Dicing in a simple board game, expressed in WDL.

(random dice 1 1)
(random dice 1 2)
(random dice 1 3)
(random dice 1 4)
(random dice 1 5)

(random dice 1 6)
(<= (legal ?player (move dice))
(control ?player)

nition as parameter in a random relation or in the definition of legal moves, the move-part of
a legal relation (random restriction).

A simple example of a random event is dicing in a board game. This can be expressed in
WDL as shown in listing 3.1.

The player here has the legal move move dice. The random variable dice gets unificated at
a central place, after the player actually performs the move. Each possible expression (defined
by the random statements) e € M = {1,2,...,6} can be chosen with p(e) = % as probability.

To get adjustable probabilities, the probability defining value does not need to be constant.
With implications around the random relation, the probability can be defined by the game
state.

A typical example for that is a card deck, which is dealt. Each card has the same probability
to be the next, until it is dealt. Then it has the probability p(e) = 0. This is shown in listing
3.2.

Move

v e

GameController

— —>®
Move _>

Figure 3.2: The WorldController unificated the random variable and sends the result back
to all players as a normal move. So it is guaranteed that there is no possibility to
cheat with random events and all player get the same result.

26

Listing 3.2 Dealing a card deck needs adjustable probabilities. This can be done in WDL
with implications.

(<= (random drawCard @ ?card)
(card ?card)
(true (drawn ?card))

(<= (random drawCard 1 ?card)
(card ?card)
(not (true (drawn ?card)))
)
(card spades-ace)
(card spades-king)

’

With true random events we get mathematical correct values, instead of approximations
of heuristic functions as in implementations of expert systems (see figure 3.1).

The central place, where all information exchange goes through is the WDL WorldCon-
troller. The unification of random variables have to take place here.

The random variable in a performed move is replaced by the result of the (pseudo-)random
event, done by a pseudo-random generator at the WorldController (see figure 3.2). Since there
is the random restriction, this is the only possible way to get random events in the WDL. The
replaced statement is then send to the players as a normal move. Even the player who did the
move gets the random result via this way.

3.3 Incomplete Information: The visible relation

Incomplete information are things in a game, which are not visible to all players, such as the
card-values of the opponent in poker or other card games. Visibility should be possible to
adjust during the games.

To get incomplete information in WDL-based games, the relation visible is introduced and
has the following syntax:

visible <player> <expression>

The first parameter defines the player, which should be able to see the information, previ-
ously defined by the role relation. The second parameter is the expression, which hold the
information.

Incomplete information is then shown only to the defined player. The player does not reg-
ularly know, that this information is not visible to all players. In a specific game that has to
be marked by used-defined relations, if that is important. The user gets only the expression,

27

while all other players do get nothing instead of the whole visible statement. Thus if dif-
ferent information for different players are needed, several visible statements must be put
consecutively.

In listing 3.3 is an example of a move generating incomplete information. When player1i
performs this move, this leads to the the move messages (MOVE INFORMATION ONE) for
player1, (MOVE INFORMATION TWO) for player2 and (MOVE) for players3.

Incomplete information can be put both into the game state and into the functions. So the
initial state can be different for different players, moves can have results that are visible to
only some players and functions can only be applicable for only some players.

There are two kinds of placing visible statements. The first one is placing as function, thus
in the front of a statement. When placed this way, the following statement is not send to all
players but only to the specified one at the beginning of the game. The WDL description of the
game is in this case different for each player. So it is possible to create games with completely
different rules for each player, without knowing the rules of the other player. More convenient
is to create different game states for each player, for example start configurations.

Listing 3.3 Incomplete information generated in legal moves in WDL.

; information is user-defined!

(<= legal player1 (move
(visible player1l (information ?one))
(visible player2 (information ?two))

)

; pre-conditions unificating variables...

The second kind of placing visible relations is in the head of a WDL rule. This is the more
conventional kind, which is used to create rules which generate incomplete information for
example by random events.

It is not possible to put visible statements in the body of a WDL rule, since a player can
not test for visibility, and therefore can not reason about conclusions (visibility restriction).

The WorldController sees all statements, and can compute all conclusions, such as legal
moves. So the players can not have wrong rules, they play after, but all rules and information
are true. The WorldController also scans moves for visible statements and sends the replaced
statements to the appropriate players (see figure 3.3).

3.4 Realtime Systems: The realtime axiom
The WDL is not only meant to describe classic games, but also abstract games. Many of them

can not be modeled in discrete time segments, but often are continuous systems. So the WDL
needs the option of implement realtime games.

28

Move

(visible P2)
{Move Ly @

=-e
| Move _)

Figure 3.3: The WorldController replaces visible statements with the appropriate code, and
sends the adjusted moves to the different players.

GameController

Realtime is a global setting of a game, which cannot changed during a game. It is quite
likely, that in future versions of the WDL other global options are needed. So a new relation
is introduced to the WDL. Its syntax is:

set <option>

This relation is used to set global game settings, and language specific options. Global settings
must not be part of a visible statement. Currently there is only one option, which can be
set: realtime. This is the option to make a game a realtime game.

To make a game a realtime game the following relation must be added to its description.

set realtime

When setting realtime the communication protocol is changed. In round-based WDL games
(and in fact GDL games) the WorldController asks the players to make their next move. In
realtime games they actually can choose when they want to do a move.

First the WorldController sends a normal start message to all players (see section 2.3), but
the included playclock has a slightly different meaning, if the game is a realtime game. While
being the time for one move in round-based games, in realtime games the playclock is the
duration of the whole game, when it is not ended by a terminal state before. If the playclock
is zero, the game does not stop until it reaches a terminal state.

To let the player synchronize themselves with the WorldController, it sends a clock signal
every hundredth second during the game to every player. Although this sounds very often,
it is used for simulating realtime events, described later. If the clock signal is send less often,
the game tends to be round-based, with the ability of doing nothing in every round and quite
short rounds (i.e. 1 sec length). If it would be sent more often it exceeds the normal delay in
a local area network, which is around 1.5 ms [22].

The clock signal has the following format:

CLOCK <MATCHID> <CLOCK>

29

Listing 3.4 The clock signal can used to unificate variables and thus periodically start things
or set up different game stages.

(<= (game_phase 2)
(greater 200 7?clock)
(clock ?clock)

The match-id is the id, which the game gets in the start message, and clock is a integer, incre-
menting in every message, until it reaches the playclock.
The play messages in the communication have a slightly different format as well.

PLAY <MATCHID> <PLAYER> <MOVE>

Since every player now can decide to make a move itself, not necessarily all players perform
a move. The WorldControler must inform each player on every move, so it sends the acting
player with the play message.

All performed moves were handled by the WorldController in the first-in first-served mode.
It can occur that two players send moves to the WorldController, with the first move making
the second move illegal. In this case the second move is not performed. The player is not
informed that a move is not done, but since he does not get a response play message, this fact
is obvious. The other players of course do not notice that this move was intended.

In realtime games it can occur that something happens regularly at a defined time or pe-
riodically. The clock signal can used to get those things happen. In realtime games clock is
always a function, so you can use it to unificate variables and use them, as seen in listing 3.4.
The clock function parameter is updated whenever a clock signal is sent.

The stop message also differs when the game stops by the clock. It then does not have any
move in it and is simply:

STOP <MATCHID>
If a move turns the game state into a terminal state, the stop message does not differ from
normal stop messages.
3.5 Library functionality: The include relation

Many functions in games are equal over a big range of games. Examples are dice rolling, card
stacks and arithmetic functions. Implementing such functionalities for every game again is
little efficient and error-prone. To make functions reusable the WDL needs a library system.

Each file can be used as a library. Its source can simply included in an other file with the
statement:

include <filename>

30

The WorldController uses the environmental variable $WDLLIB to search for library files. To
include files from the same directory *.” must added to this variable. This is the default value,
if there is no directory in $WDLLIB. The filesuffix 'kif’ must not be included. If a file is located
in two directories in the $WDLLIB variable, the first one is chosen.

Each file is called a module. The filename is also called the modulename. Each module has
its own namespace, so name-clashes are minimized.

Several modules can be put in the same directory and build up a logical package. Modules
in the same package lie in the same directory. The packagename is the directoryname. To
include a module from a package, the packagename have to be declared:

include <packagename>:<modulename>

The complete name of a term in a module is defined by the packagename, the modulename
and the termname seperated by colons:

<packagename>:<modulename>:<termname>

To use a relation from a module its complete name must be used. A simple dice in a library
is shown in listing 3.5.

The players do not need to know the include relation, since the WDL description of the
game they get, includes all files. Each term is named by its complete name, even the included
terms.

31

Listing 3.5 The library file boardgames/dicing.kif simply holds all relations needed for the
provided feature of dicing. The game implementation can use the dice, with the complete
name, but do not have to implement the dice again.

2999992992299 9999992293939 IIIIIDIDIDIDIDIDIDIDINIDIINIDINDID

; $WDLLIB/boardgames/dicing.kif

2929922299222 9322233322233 IIDIDIDIDIDIDIDIDNDNDNDINDIDIDYODNODNID

(random dice 1 1)

(random dice 1 2)
(random dice 1 3)
(random dice 1 4)
(random dice 1 5)
(random dice 1 6)

; EOF

2990992992292 992929293222 NIIDIDIDIDIDIDIDIDNIDNDIDINIDNDIDNDNDINDNDNDINDNDIDINDNDIOINODYD
; game.kif

2299222993222 9322233322333 IDIDIDNDNDNDINDIDIDIODNODNID

(include boardgames:dicing)

P

(<= (legal ?player (move boardgames:dicing:dice))
(control ?player)

32

Chapter 4

Experimental Results and Discussion

In the last chapter the World Description Language was introduced. The new features make
it possible to describe games and systems in it, which were not possible to be defined before
in the GDL. This chapter shows, how these features are used in real-life problems. The pop-
ular games Backgammon and Black Jack are used as examples of games, which use random
events and incomplete information. A Chess clock uses the realtime capability of the WDL.
After describing the concrete implementations of these games, the benefits of the WDL are
discussed.

4.1 Backgammon

Backgammon is a two-player game. The board of backgammon consists of 24 triangles, so
called points. They are ordered twelve on each site. The first six are the home board of the
black player, the last six the home board of the white player. Each player has 15 pieces in his
colour, which are in the beginning positioned in a defined way (see figure 4.1). This board is
implemented in the init relation, as it would be done in GDL. The first number defines the
number of the point, the second number the number of white pieces, the last the number of
black pieces on this point.

(init (point 1 2 @)) ; Point one has 2 white and @ black pieces
(init (point 2 0@ 0))

PRI

The black player moves from the last to the first point, the white player contrary. In the
beginning of the game each player rolls a dice. The one with the bigger result begins the
game. This is defined with a phase-pattern. Each game state is modeled as a specific phase,
which is hold in the game state. Theses phases are used to model specific game situations
with different possible moves. It is a extension to the simple control pattern, used in many
GDL games. Backgammon starts in the pre-start phase.

(init (phase prestart))

In the pre-start phase each player is only allowed to roll a dice. Thus the dice from listing 3.5
is included and used. Both players have the following legal move.

33

Figure 4.1: The start position of all pieces in classic backgammon. White moves forward,
black backwards (arrows). The first six points are the black, the last six the white
home-board.

(<= (legal ?player (roll dicing:dice))
(true (phase prestart))
)

After finding the beginner, each player rolls two dices and moves two pieces forward, each
piece the number of points one dice shows. It is possible to move the same piece two times
a round. If the pieces reaches a point where only one opponent piece lies, it captures the
opponents piece. If there are more than one opponent pieces the move is not allowed.

Actually each player has four phases each turn. Two to roll the dice and two to move
the pieces afterward. While the dice-roll is specified like in the pre-start phase, the move is
defined by:

(<= (legal white (move ?from ?to first))
(true (phase white move ?u))
(true (bar white 0))
(getpieces ?from white ?num)
(greater:greaterthan ?num 0)
(true (firstroll 7?step))
(plus:plus ?from ?step ?to)
(getpieces ?to black ?oppnum)
(greater:greaterthan 2 ?oppnum)

)

The result of the dice-roll is saved in the firstroll (and in fact in a secondroll statement,
which is used for the second dice-roll) statement. For the arithmetic comparison and addition
the library functionality is used again.

34

A player is only allowed to make a move if no piece was captured, which is checked with
(true (bar white 0)). If a piece is captured, the player has to reenter it to the game in the
next round. He rolls the dices and puts the piece to the n-th field, depending on the dice-roll. If
he cannot set the piece to the according points, because opponent pieces blocks them, he must
wait until he can reenter his pieces. Reentering is performed with the following statement,
which is quite similar to the normal move.

(<= (legal white (move @ ?to first))
(true (phase white move ?u))
(true (bar white ?value))
(greater:greaterthan ?value 0)
(true (firstroll 7?step))
(plus:plus @ ?step ?to)
(getpieces ?to black ?oppnum)
(greater:greaterthan 2 ?oppnum)

The goal of the game is to get all pieces out of the board. A player can start getting them out,
when all his pieces are in his home-board. Then he can move pieces over the last point and
then get them out. So a third kind of move must be defined:

(<= (legal white (move ?from out first))
(true (phase white move ?u))
(true (bar white 0))
(allhome white)
(getpieces ?from white ?num)
(greater:greaterthan ?num @)
(true (firstroll 7?step))
(plus:plus ?from ?step ?to)
(greater:greaterthan ?to 24)

All this statements are possible in GDL as well. Only the dice rolling and the library function-
ality is new in the WDL. Nevertheless implementing Backgammon was not possible before
having the random event extension.

The complete source code of the WDL-Backgammon implementation can be found in Ap-
pendix A.2. All included files can be found in Appendix A.1.

4.2 Black Jack

Black Jack is a very popular card-game. The version described here is a very simple version,
more like the french “Vingt Un”. The goal of the game is to get points as near to 21 as possible,
but no point more.

35

To keep it simple, in this version the bank plays against only one player. In GDL it was not
possible to deal with cards. Therefore random events and incomplete information is needed.
In the WDL card-stacks can be handled. Since many games need a cardstack it was moved to
a module, which defines the cards, so they can reused later.

(card sa spades ace)
(card sk spades king)
(card sq spades queen)
(card sj spades jack)
(card st spades 10)

y oo

When cards are dealt only the player who gets the card should know, which card he has got.
Of course no card should be dealt twice.

(<= (legal ?player (get (visible ?player getcard)))
(true (phase deal ?x ?player))
)
(<= (random getcard @ ?card)
(true (hascard ?player ?color ?value))
(carddeck:card ?card ?color ?value)
)
(<= (random getcard 1 ?card)
(carddeck:card ?card ?color ?value)
(not (true (hascard ?player ?color ?value)))
)
(<= (next (hascard ?player ?color ?value))
(does ?player (get ?card))
(carddeck:card ?card ?color ?value)

)

This four relations handle the problem. Each player has its own deal-phase. So it is not
possible to give two players the same card in one round. The given card is only visible for the
player through the visible relation.

This is also a typical example for changing probabilities. When a card is dealt, the chance
is zero for getting the card again. Otherwise all cards have the same chance to get dealt.
Whenever a card is dealt, that is saved with the hascard relation. Since only the player who
gets the card - and of course the WorldController - knows that, this does not need to get a
visible statement. Nevertheless it has the probability of zero, because the WorldController
knows the hascard statement and therefore computes the right values.

Here is a phase-pattern used as well, but Black Jack only uses two phases: the deal phase
and the play phase. In the play phase the players are able to get more cards, with the same
get move as above or they finish their play phase.

After both player have finished, they have to send their points, because the other player
would not know which player has won the game otherwise. The WorldController checks for
cheating automatically, because wrong points would result in illegal moves.

36

(<= (legal ?player (send ?mypoints))
(true (finished))
(true (points ?player ?mypoints))

)

(<= (next (points ?player ?points))
(does ?player (send ?points))

So both players know how many points the opponent has and can compute the winner, with
the goal statements.

The complete source code of the Black Jack version can be found in Appendix A.3. The
card-deck can be found in Appendix A.1.

4.3 Chess Clock

In GDL it is possible to describe the rules of Chess, but it is not possible to model the concept
of a Chess clock, used in Chess tournaments. In a Chess game a player has a specific time for
all his moves. So he can take his time for the more important moves, and act faster when the
move is clear. In GDL a player has the same time for each move. With the realtime ability of
the WDL it is possible to build a traditional Chess clock. For the Chess clock the Chess game
from the Stanford server is modified [33].

First the game is made a realtime game with set realtime and the noop moves are removed
from the description. A Chess clock is added by the following implication:

(<= (next (chessclock ?player ?newtime))
(true (control ?player))
(clock ?current)
(true (chessclock ?player ?oldtime))
(successor:++ ?o0ldtime ?newtime)

Now the Chess clock counts the hundredth seconds for each player, if he has control. To create
a Blitzchess (5 minutes per person) goal and terminal relations are added.

(<= terminal
(true (chessclock ?player ?time))
(greater:greaterthan ?time 30000)
)
(<= (goal ?0pp 100)
(true (chessclock ?player ?time))
(greater:greaterthan ?time 30000)
(opposite ?player ?opp)

37

With this simple extension a real Chess clock is added to the Chess game. Each player now
can count his own time and act faster or slower accordingly. When a player does not have
the control, he simply has no legal move and therefore does nothing. This is not legal in
round-based games, but, however, in realtime games.

4.4 Discussion

As shown the WDL can describe a much larger range of games than the GDL. However,
WDL syntax is in most cases equal to the GDL, so persons used to the GDL will really fast
understand the new concepts. Even the most player programs for GDL will be able to play
WDL games with random events and incomplete information, since the player does not really
notice the new features.

Incomplete information is completely hidden from the players. They simply get the infor-
mation they should know.

All random events are handled by the WorldController. The moves of the players can
simply reasoned from GDL players, because they only include random variables, which are
handled like terms.

Also the library system is designed to be handled by the server and not alter the player
behavior. All what is done, is done by the WorldController, so the players do not need to
know about the include statement at all.

These are the reasons why current GDL players are in most cases able to play WDL games.
Since GDL is widely used today this was a design goal from the beginning and is achieved by
not altering any GDL concept more than necessary. The examples Backgammon and Black
Jack are also examples of WDL games, which are understood by GDL players. Of course the
Al should know about the random events to perform better moves, but in fact that is not
necessary.

An exception is the realtime extension. Since the communication protocol is altered, the
players must know about that. Nevertheless the protocol and behavior is only altered slightly,
so this is not a big modification of the GDL structure.

Another design goal was to keep the new relations as abstract as possible. The random
relation only does random events, not dicing or shuffling or such concrete actions. As shown
with Backgammon and Black Jack several different concrete game concepts can realized with
the random relation. That is a big advantage over the RGL or the EGGM, which has too
specific statements. For implementation of classic games that might be easier, but for more
unconventional games the abstract concept fits better.

In addition the library functionality helps to create games faster and less error-prone. Many
concepts are used over a big range of games, such as arithmetic functionality, dices or card-
decks. Although only three examples are chosen for this thesis, such features could moved to
a small library and used over all these games.

With the visible statement not only incomplete information can be realized, also commu-
nication between players are possible to model. A player performs a move, which sets data,
visible for only one player or a range of players. This could be interesting in realtime games,
where agents move around autonomously and communicate with each other.

38

Another advantage over other languages, such as EGGM or Zillions of Games is the avail-
ability of an open source framework. With that everyone is able to develop and test its players
and let them play against each other.

39

Chapter 5

Conclusion and Future Work

With the WDL there is a new language available to describe games, which exceeds the ca-
pabilities of all previous languages. The possibility of describing realtime games is unique
for game description languages. The library system makes the WDL very flexible. With a
standard library it would be possible to rapidly develop new games, which are more readable
and understandable.

Nevertheless there are some points, which should be achieved in future work. In the real-
time mode there is no possibility to force players to do something. At worst all players could
do simply nothing. In some games there could be scenarios where forcing players to perform
a move is necessary. Together with the random restriction it is not possible to force random
events to happen at a specific point. All clock controlled events have to be deterministic.

Another point is the bad arithmetic support of the WDL. Although arithmetic functionality
can easily described in libraries, they are not really fast. A big problem is the absence of
a number-definition. All numbers have to defined by hand in successor relations. Many
games need arithmetic functions and numbers - even rational numbers, to describe points
and relations between players. At this point this increases the size of libraries a lot, because
every single number must be defined. Including numbers to the WDL would help developing
games a lot.

So there are some minor updates for the WDL which would increase its advantage.

A language for game description is useless without Als playing these games. At the Freie
Universitat Berlin, there are two projects related to the WDL. The first one is Maskin Leke
(Norwegian for Playing Machine), a WDL playing Al, the second one is Verden (Norwegian
for World), a framework for building games in WDL and building agents for them.

5.1 Maskin Leke

Maskin Leke is the Al for WDL games, which is currently under development at the Freie
Universitat Berlin. The goal is to get a strong Al, which is not only able to play and win
almost every game, but to understand the rules.

Most modern GGP-Als use Monte Carlo methods to achieve good results [5, 6]. This meth-
ods use statistical reasons to choose moves in a game. Hundreds of games are played randomly
until they end. After that the move leading to the most wins is chosen. There are also some
improvements, like the UCT algorithm [12].

40

Although they perform well, they do not really understand the problem, but handle them
only with pure compute power [4]. The goal of the Maskin Leke team is to get a computer
understand the rules of the game and therefore perform well, instead of winning through
better computing power. New approaches are needed for that goal.

The most important function is a evaluation function generator. A good feature generator
is needed to get a reliable evaluation function. A first idea is to adjust a feature generator
like the Zenith system of Fawcett to WDL games [26]. They find features by reason about
the rules. This may be to slow for a typical WDL game, but could be a good starting point.
The importance of these features must then be learned with machine learning approaches like
reinforcement learning or neuronal networks [2, 20].

It might be a good approach to implement different Al methods and learn which concept
fits to which kind of game. Games must be clustered for this idea. Pattern recognition must
then applied to the rules of the game, and an Al decides which concept is used by finding
similarities to other games played before.

Pattern recognition also can applied to game states, which had lead to a victory, and it can
be tried to find similarities in that states, which can lead to new features.

5.2 Verden

Another project directly related to the WDL is Verden, which aims to be a framework around
the WDL. Verden should first include a library for WDL games, which covers the most im-
portant game concept as well as arithmetic functionality. With this library it will be possible
to fasten the game development with WDL a lot.

Verden should also consist of a graphical user interface for creating games in WDL. So users
from other domains than computer science will be able to develop games and systems in WDL.
This could be interesting for rapidly simulate economic or biologic systems and instantly have
Als for these systems.

Additionally it should be possible to create agents for systems, where a human being can
simply add different Al concepts to an agent to specialize it for a particular job or generalize
it for a range of jobs and games.

With a accordant API a general Al platform could be created. Of course this is a big goal
which can not be achieved in a short time.

41

References

[1] Kulick J., Block M., Rojas R.: “General Game Playing mit stochastischen Spielen”, Tech-
nical Report B-09-08, Freie Universitat Berlin, 2009

[2] Block M., Bader M., Tapia E., Ramirez M., Gunnarsson K., Cuevas E., Zaldivar D., Rojas
R.: “Using Reinforcement Learning in Chess Engines”, Concibe Science 2008, In Journal
Research in Computing Science: Special Issue in Electronics and Biomedical Engineer-
ing, Computer Science and Informatics, Vol.35, pp.31-40, 2008

[3] Love N., Hinrichs T., Haley D., Schkufza E., Genesereth M.: “General Game Playing:
Game Description Language Specication”, Stanford Logic Group Computer Science De-
partment Stanford University, Technical Report LG-2006-01, 2008

[4] Bader M.: “Eine allgemeine selbstlernende Strategie fiir nicht-kooperative Spiele”,
Diploma-Thesis at the Freie Universitat Berlin, 2008

[5] Holt A.: "General Game Playing Systems”, M.Sc. Thesis, Technical University of Den-
mark, 2008

[6] Finnson H.: “CADIA-Player: A General Game Playing Agent”, M.Sc. Thesis, Reykjavik
University, 2007

[7] Schaeffer]., Burch N., Bjornsson Y., Kishimoto A., Muller M., Lake R., Lu P., Sutphen S.:
“Checkers is Solved”, Magazin Science, Vol.317, No.5844, pp. 1518-1522, 2007

[8] Quenault M., Cazenave T.: “Extended General Gaming Model”, In Computer Games
Workshop, pp. 195-204, 2007

[9] Kaiser D.: “The Structure of Games”, Dissertation at the Florida International University,
2007

[10] Kurbel K.: “Entwicklung und Einsatz von Expertensystemen: Eine anwendungsorien-
tierte Einfiihrung in wissensbasierte Systeme”, ISBN: 978-3540552376, Springer Verlag,
2007

[11] Billings D.: “Algorithms and Assessment in Computer Poker”, Dissertation of the Uni-
versity of Alberta/Kanada, 2006

[12] Gelly S., Wang Y.: “Exploration exploitation in Go: UCT for Monte-Carlo Go”, In NIPS:
Neural Information Processing Systems Conference On-line trading of Exploration and
Exploitation Workshop, 2006

42

[13] Block M.: “Verwendung von Temporale-Differenz-Methoden im Schachmotor FUSc#”,
Diploma-Thesis at the Freie Universitat Berlin, 2004

[14] Rojas R., Goktekin C., Friedland G., Kriiger M., Scharf L.: “Konrad Zuses Plankalkiil
Seine Genese und eine moderne Implementierung “, Freie Universitat Berlin, 2002

[15] Campbell M., Hoane A., Hsu F.: “Deep Blue”, Artificial Intelligence, 2002

[16] Bratko 1. "PROLOG Programming for Artificial Intelligence”, 3rd Edition, ISBN:
0201403757, Pearson Verlag 2001

[17] van der Werf E.: “Al techniques for the game of Go”, Dissertation at the Universiteit
Maastricht, 2004

[18] Tesauro G.: “Comparison Training of Chess Evaluation Functions”, In: Machines that
learn to play games, ISBN:1-59033-021-8, Nova Science Publishers, pp.117 - 130, 2001

[19] Romein J., Bal H., Grune D.: “The Multigame Reference Manual”, Technical Report IR-
475, Vrije Universiteit, Amsterdam, 2000

[20] Rojas R.: “Neuronal Networks”, ISBN: 3540605053, Springer Verliag, 1996.

[21] Romein J., Bal H., Grune D.: “Multigame - A Very High Level Language for Describing
Board Games”, First Annual ASCI Conference, 1995

[22] Gadegast F.: "T'CP/IP-basierte Dienste zur Speicherung von Multimedia-Daten”,
Diploma-Thesis at the Technische Universitat Berlin, 1995

[23] Pell B.: "Strategy Generation and Evaluation for Meta-Game Playing”, Dissertation at
the Trinity College, 1993

[24] Pell B.: “Metagame in Symmetric, Chess-Like Games.”, In van den Herik H. and Allis L.
eds.: Heuristic Programming in Artificial Intelligence 3 - The Third Computer Olympiad,
Ellis Horwood, 1992

[25] Genesereth M., Fikes R., et al.: “Knowledge Interchange Format - Version 3.0 Refer-
ence Manual”, Stanford Logic Group Computer Science Department Stanford Univer-
sity, Technical Report Logic-92-1, 1992

[26] Fawcett T., Utgoff P.: “Automatic feature generation for problem solving systems.”
COINS Technical Report 92-9, University of Massachusetts, 1992.

[27] Merritt D.: “Building Expert Systems in Prolog”, ISBN: 0387970169, Springer Verlag, 1989

[28] Pitrat J.: “Realization of a general game-playing program”, IFIP Congress (2), pp.1570-
1574, 1968

[29] Nash J.F.: “Non-cooperative Games”, Dissertation at the Princeton University, 1950

43

[30] von Neumann J., Morgenstern O.: “Theory of Games and Economic Behavior”, ISBN:
0691130612, Prinction University Press, 1944

[31] Website of the GGP-Group of the Freie Universitat Berlin:
http://gameai.mi.fu-berlin.de/ggp/index.html

[32] Website of the GGP-Group of the Technische Universitit Dresden:
http://www.general-game-playing.de

[33] Website of the GGP-Group of the University of Stanford:
http://games.stanford.edu

[34] Website of the GIGA 2009:
http://www2.ru.is/faculty/yngvi/GIGA09/

[35] Website of Zillions of Games:
http://www.zillions-of-games.com

All mentioned weblinks were valid on September 21, 2009.

44

http://gameai.mi.fu-berlin.de/ggp/index.html
http://www.general-game-playing.de
http://games.stanford.edu
http://www2.ru.is/faculty/yngvi/GIGA09/
http://www.zillions-of-games.com

Appendix A
Games in WDL

A.1 The Library

Some functionality is moved to a small library. This library is shown here.

A.1.1 Dicing
(random dice 1 1)
(random dice 1 2)
(random dice 1 3)
(random dice 1 4)
(random dice 1 5)
(random dice 1 6)

A.1.2 Carddeck

; Define Cards

(card sa spades ace)
(card sk spades king)
(card sq spades queen)
(card sj spades jack)
(card st spades 10)
(card s9 spades 9)
(card s8 spades 8)
(card s7 spades 7)
(card s6 spades 6)
(card s5 spades 5)
(card s4 spades 4)
(card s3 spades 3)
(card s2 spades 2)
(card da diamonds ace)
(card dk diamonds king)
(card dgq diamonds queen)
(card dj diamonds jack)

46

(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card
(card

dt
d9
ds8
d7
d6
d5
d4
d3
d2
ca
ck
cq
Cj
ct
c9
c8
c7
c6
c5
c4
c3
c2
ha
hk
hq
hj
ht
h9
h8
h7
hé
h5
h4
h3
h2

diamon
diamon
diamon
diamon
diamon
diamon
diamon
diamon
diamon
clubs
clubs
clubs
clubs
clubs
clubs
clubs
clubs
clubs
clubs
clubs
clubs
clubs
hearts
hearts
hearts
hearts
hearts
hearts
hearts
hearts
hearts
hearts
hearts
hearts
hearts

ds 10)

ds 9)

ds 8)

ds 7)

ds 6)

ds 5)

ds 4)

ds 3)

ds 2)

ace)

king)
queen)
jack)

10)

9

8)

7)

6)

5)

4)

3)

2)
ace)
king)
queen)
jack)
10)
9)

8)
7)
6)
5)
4)
3)
2)

; card relations

(succ
(succ
(succ
(succ
(succ
(succ
(succ
(succ

O 00 N O O W DN

3)
4)
5)
6)
7)
8)
9
10)

(succ 10 jack)
(succ jack queen)
(succ queen king)
(succ king ace)

A.1.3 Arithmetic Functionality

(include successor)

(<= (greaterthan ?x ?y)
(successor:++ ?y ?x))

(<= (greaterthan ?x ?y)
(successor:++ 7z ?x)
(greaterthan ?z ?y))

(<= (plus ?num 1 ?result)
(successor:++ ?num ?result)

(<= (plus 1 ?num ?result)
(successor:++ ?num ?result)

(<= (plus ?one ?two ?result)
(successor:++ ?twodec ?two)
(successor:++ ?one ?oneinc)
(plus ?oneinc ?twodec ?result)

(<= (minus ?one ?two ?result)
(plus ?result ?two ?one)

A.2 Backgammon

2999999992999 2999999929923 IIIIDIDIIIIIINIINIINDINDINDNIDINDIDINIDINININDINDIDINDINDND

; Backgammon (classic rules)

2229922292222 9322223322223 22NN DIDIDIDNDNDNDNDIDIDNDNDNDNDIDINDNDNDNIID

; Some includes
(include dicing)
(include greater)
(include plus)
(include successor)

; Backgammon has two players
(role black)
(role white)

48

; The Startpositions have the following format:
; (point <POINTNR> <WHITE_PIECES> <BLACK_PIECES>)
(init (point 1 2 0))

(init (point 2 0 ©))
(init (point 3 @ 0))
(init (point 4 0 0))
(init (point 5 0 0))
(init (point 6 @ 5))
(init (point 7 @ 0))
(init (point 8 0 3))
(init (point 9 0 9))
(init (point 10 @ ©))
(init (point 11 @ @))
(init (point 12 5 @))
(init (point 13 @ 5))
(init (point 14 @ 0))
(init (point 15 @ ©))
(init (point 16 @ @))
(init (point 17 3 0))
(init (point 18 @ ©))
(init (point 19 5 0))
(init (point 20 @ ©))
(init (point 21 @ @))
(init (point 22 0 0))
(init (point 23 @ 9))
(init (point 24 @ 2))

;No pieces are out or on the bar in the beginning
(init (bar black 0))
(init (bar white 0))
(init (out black 0))
(init (out white 0))

2299222292222 9322233322333 NDIDIDIDIDIDNDIDIDIDIDIDNDNDNDIDINDINDNDNDNDINDIDNDNDNINIOIDY

; The game starts in the Pre-Start phase

2999999999999 9999999299293 IIIIIIIIIIDIDINIDINIDIDINIDINIDINIINIINIIDINDNDNDNDIDNY

(init (phase prestart))

; always keep the points

(<= (next (point ?number ?black ?white))
(true (point ?number ?black ?white))
(not (true (phase black move 1)))
(not (true (phase black move 2)))

(not (true (phase white move 1)))
(not (true (phase white move 2)))
)
; don’t keep numbers for playerd points
(<= (next (point ?number ?black ?white))
(true (point ?number ?black ?white))
(true (phase ?player move ?7i))
(does ?player (move ?from ?to ?j))
(distinct ?number ?from)
(distinct ?number ?to)
)
; keep bars
(<= (next (bar ?opp ?value))
(does ?player (move ?from ?to ?i))
(opposite ?player ?opp)
(getpieces ?to ?opp 0)
(true (bar ?opp ?value))

(<= (next (bar ?opp ?value))
(does 7?player (move 25 25 ?i))
(opposite ?player ?opp)
(true (bar ?opp ?value))

(<= (next (bar ?player ?value))
(true (phase ?player move ?i))
(does ?player (move ?from ?to ?73j))
(distinct ?from @)
(true (bar ?player ?value))

(<= (next (bar ?player ?value))
(true (bar ?player ?value))
(not (true (phase white move 1)))
(not (true (phase white move 2)))
(not (true (phase black move 1)))
(not (true (phase black move 2)))

2999999999999 9399999299229 IIIIIIIIIDIDINIDIDIDINIDIDINIINIINIIDINDIDINDINDNDY

; In the pre-start phase each player rolls a dice. The one with
; the bigger result begins.

2929222292222 9322293322233 IIDIDIDIDIDIDIDNDNDIDIDIDNDNDNDNDIDIDNDNDNDNDIDINDNDNDNDINID
(<= (legal ?player (roll dicing:dice))
(true (phase prestart))

; switch phase

50

(<= (next (phase getstarter))
(true (phase prestart))
)
; save values of the dice
(<= (next (rollvalue ?player ?dice))
(does 7?player (roll ?dice))
(true (phase prestart))
)
; players have to wait
(<= (legal ?player noop)
(true (phase getstarter))
)
; get the bigger dice value and give control to according player
; (he must not dice again)
(<= (next (phase ?playerone move 1)) ; For player phases see below
(true (phase getstarter))
(true (rollvalue ?playerone ?diceone))
(opposite ?playerone ?playertwo)
(true (rollvalue ?playertwo ?dicetwo))
(greater:greaterthan ?diceone ?dicetwo)

(<= (next (phase prestart)) ; For the same result roll dices again
(true (phase getstarter))
(true (rollvalue ?playerone ?dice))
(opposite ?playerone ?playertwo)
(true (rollvalue ?playertwo ?dice))
)
; save dice values
(<= (next (firstroll ?value))
(true (phase getstarter))
(true (rollvalue black ?value))
)
(<= (next (secondroll ?value))
(true (phase getstarter))
(true (rollvalue white ?value))
)
; if it is not your turn, do nothing
(<= (legal ?0pp noop)
(true (phase ?player 7?x))
(opposite ?player ?opp)
)
(<= (legal ?0pp noop)
(true (phase ?player move ?x))
(opposite ?player ?opp)

2999999999999 2999999929923 IIIIIIIIDIDINIDINIDIDINDINIDINIDINIINIDINDIDINDINDYDY

;Each player has four things to do in his turn (player phases):

; 1. Roll the first dice

; 2. Roll the second dice

; 3. Move the first piece

; 4. Move the second piece (could be the same)

;There could be two things more if both dice show the same result:
; 5./6. Move the third and forth piece

2999999992992 9939399922232 IIIDIIIIIIIIDIDIDIDIDIDINIDIDINIINIDINDIDINDIDYD

; phase 1

(<= (legal ?player (roll dicing:dice))
(true (phase ?player 1))

)

(<= (next (phase 7?player 2))
(true (phase ?player 1))

(<= (next (firstroll ?value))
(does 7?player (roll ?value))
(true (phase ?player 1))

299999999999 2999999929923 IIIIIIIIDIDINIDINIDIDINDINIDINIDINIINIIDINDIDINDINDYDY

; phase 2

(<= (legal ?player (roll dicing:dice))
(true (phase ?player 2))

)

(<= (next (phase ?player move 1))
(true (phase ?player 2))

)

(<= (next (secondroll ?value))
(does 7?player (roll ?value))
(true (phase ?player 2))

)

(<= (next (firstroll ?value))

(true (phase ?player 2))

(true (firstroll ?value))

)

(<= (next (pair ?value))

(true (firstroll ?value))

(does ?player (roll ?value))

2999999999999 2999999929929 333392292 IIIIIIDIDIDINIDINIDIDINIDIDINIDINIIIDINDIDIDIDYD

; phase 3-6
; normal move

2999222299229 2223332223322 IDIDIDIDIDNDIDIDIDIDINDNDNDNDIDIDIDNDNDIDINDIDNDNDNDINIOIDY

; white goes forward...

(<= (legal white (move ?from ?to first))
(true (phase white move ?u))
(true (bar white 0))
(getpieces ?from white ?num)
(greater:greaterthan ?num @)
(true (firstroll 7?step))
(plus:plus ?from ?step ?to)
(getpieces ?to black ?oppnum)
(greater:greaterthan 2 ?oppnum)

(<= (legal white (move ?from ?to second))
(true (phase white move ?i))
(true (bar white 0))

(getpieces ?from white ?num)
(greater:greaterthan ?num 0)
(true (secondroll 7?step))
(plus:plus ?from ?step ?to)
(getpieces ?to black ?oppnum)
(greater:greaterthan 2 ?oppnum)

)

; input pieces on the bar

(<= (legal white (move @ ?to first))
(true (phase white move ?u))
(true (bar white ?value))
(greater:greaterthan ?value 0)
(true (firstroll 7?step))
(plus:plus @ ?step ?to)
(getpieces ?to black ?oppnum)
(greater:greaterthan 2 ?oppnum)

(<= (legal white (move @ ?to second))
(true (phase white move ?i))
(true (bar white ?value))
(greater:greaterthan ?value 0)
(true (secondroll ?step))
(plus:plus @ ?step ?to)
(getpieces ?to black ?oppnum)
(greater:greaterthan 2 ?oppnum)

)

; do nothing if there are no legal moves

(<= (legal white (move 25 25 first))
(true (phase white move 1))
(true (bar white ?value))
(greater:greaterthan ?value 0)
(true (firstroll 7?step))
(plus:plus @ ?step ?to)
(true (secondroll ?steptwo))
(plus:plus @ ?steptwo ?totwo)
(getpieces ?to black ?oppnum)
(greater:greaterthan ?oppnum 2)
(getpieces ?totwo black ?oppnumtwo)
(greater:greaterthan ?oppnumtwo 2)

(<= (legal white (move 25 25 second))
(true (phase white move 2))
(true (bar white ?value))
(greater:greaterthan ?value 0)
(true (secondroll ?steptwo))
(plus:plus @ ?steptwo ?totwo)
(getpieces ?totwo black ?oppnumtwo)
(greater:greaterthan ?oppnumtwo 2)

(<= (legal white (move ?from out first))
(true (phase white move ?u))
(true (bar white 0))
(allhome white)
(getpieces ?from white ?num)
(greater:greaterthan ?num @)
(true (firstroll 7?step))
(plus:plus ?from ?step ?to)
(greater:greaterthan ?to 24)

(<= (legal white (move ?from out second))
(true (phase white move ?i))
(true (bar white 0))
(allhome white)
(getpieces ?from white ?num)
(greater:greaterthan ?num 0)
(true (secondroll ?step))
(plus:plus ?from ?step ?to)
(greater:greaterthan ?to 24)

)

; black backwards

(<= (legal black (move ?from ?to first))

(true (phase black move ?u))
(true (bar black 0))

(getpieces ?from black ?num)
(greater:greaterthan ?num @)
(true (firstroll 7?step))
(plus:minus ?from ?step ?to)
(getpieces ?to white ?oppnum)
(greater:greaterthan 2 ?oppnum)

(<= (legal black (move ?from ?to second))
(true (phase black move ?i))
(true (bar black ©))

(getpieces ?from black ?num)
(greater:greaterthan ?num @)
(true (secondroll 7?step))
(plus:minus ?from ?step ?to)
(getpieces ?to white ?oppnum)
(greater:greaterthan 2 ?oppnum)

)

; input pieces on the bar

(<= (legal black (move @ ?to first))
(true (phase black move ?u))
(true (bar black ?value))
(greater:greaterthan ?value 0)
(true (firstroll 7?step))
(plus:minus 25 ?step ?to)
(getpieces ?to white ?oppnum)
(greater:greaterthan 2 ?oppnum)

(<= (legal black (move @ ?to second))
(true (phase black move ?i))
(true (bar black ?value))
(greater:greaterthan ?value 0)
(true (secondroll 7?step))
(plus:minus 25 ?step ?to)
(getpieces ?to white ?oppnum)
(greater:greaterthan 2 ?oppnum)

)

; do nothing if there are no legal moves

(<= (legal black (move 25 25 first))
(true (phase black move 1))

(true (bar black ?value))
(greater:greaterthan ?value 0)
(true (firstroll ?step))

(<=

)

(plus:minus 25 ?step ?7to)

(true (secondroll ?steptwo))
(plus:minus 25 ?steptwo ?totwo)
(getpieces ?to white ?oppnum)
(greater:greaterthan ?oppnum 2)
(getpieces ?totwo white ?oppnumtwo)
(greater:greaterthan ?oppnumtwo 2)

(legal black (move 25 25 second))
(true (phase black move 2))

(true (bar black ?value))
(greater:greaterthan ?value 0)
(true (secondroll ?steptwo))
(plus:minus 25 ?steptwo ?totwo)
(getpieces ?totwo white ?oppnumtwo)
(greater:greaterthan ?oppnumtwo 2)

; move pieces out

(<=

(<=

(legal black (move ?from out first))
(true (phase black move ?u))

(true (bar black 0))

(allhome black)

(getpieces ?from black ?num)
(greater:greaterthan ?num @)

(true (firstroll 7?step))

(plus:minus ?from ?step ?to)
(greater:greaterthan @ ?to)

(legal black (move ?from out second))
(true (phase black move ?i))

(true (bar black 0))

(allhome black)

(getpieces ?from black ?num)
(greater:greaterthan ?num @)

(true (secondroll ?step))

(plus:minus ?from ?step ?to)
(greater:greaterthan @ ?to)

(next (phase ?player move 2))
(true (phase ?player move 1))
(not (does ?player noop))

(next (phase ?opp 1))
(true (phase ?player move 2))

55

(<=

(<=

)

(opposite ?player ?opp)
(does 7?player noop)

(next (pair ?value))
(true (phase ?player move 1))
(true (pair ?value))

(next (firstroll ?value))

(does ?player (move ?from ?to second))
(true (phase ?player move 1))

(true (firstroll ?value))

(next (secondroll ?value))

(does ?player (move ?from ?to first))
(true (phase ?player move 1))

(true (secondroll ?value))

; Decrement old position

(<=

(<=

)

(next (point ?from @ ?black))

(does black (move ?from ?to ?i))
(true (point ?from ?white ?oldblack))
(successor:++ ?black ?oldblack)

(next (point ?from ?white 0))

(does white (move ?from ?to ?i))
(true (point ?from ?oldwhite ?black))
(successor:++ ?white ?oldwhite)

(next (bar ?player ?value))

(does ?player (move @ ?to ?i))
(true (bar ?player ?oldvalue))
(successor:++ ?value ?oldvalue)

; Increment new position

(<=

)

(<=

56

(next (point ?to @ ?black))

(does black (move ?from ?to ?i))
(true (point ?to ?white ?oldblack))
(successor:++ ?oldblack ?black)

(next (point ?to ?white 0))

(does white (move ?from ?to ?i))
(true (point ?to ?oldwhite ?black))
(successor:++ ?oldwhite ?white)

; Increment or keep outs

(<= (next (out ?player ?value))
(does ?player (move ?from out ?i))
(true (out ?player ?oldvalue))
(successor:++ ?0ldvalue ?value)

(<= (next (out ?player ?value))
(does ?player (move ?from ?to ?i))
(distinct out ?to)
(true (out ?player ?value))

(<= (next (out ?player ?value))
(not (true (phase black move 1)))
(not (true (phase black move 2)))
(not (true (phase white move 1)))
(not (true (phase white move 2)))
(true (out ?player ?value))

)

(<= (next (out ?player ?value))

(true (phase ?opp move ?i))

(opposite ?player ?opp)

(true (out ?player ?value))

)

; increment bars

(<= (next (bar ?opp ?value))
(does 7?player (move ?from ?to ?i))
(opposite ?player ?opp)
(getpieces ?to ?opp 1)

(true (bar ?0pp ?o0ldvalue))
(successor:++ ?oldvalue ?value)

)

(<= (next (phase ?player move 1))
(true (phase ?player move 2))
(true (pair ?value))

(<= (next (firstroll ?value))
(true (phase ?player move 2))
(true (pair ?value))

(<= (next (secondroll ?value))
(true (phase ?player move 2))

(true (pair ?value))

(<= (next (phase ?opp 1))

57

58

(true (phase ?player move 2))
(opposite ?player ?opp)

(not (true (pair 1)))

(not (true (pair 2)))

(not (true (pair 3)))

(not (true (pair 4)))

(not (true (pair 5)))

(not (true (pair 6)))

2999992992299 9999999222933 IIIIIDIDIDIDIDIDIIIIIDINDIDIDIDNDD

; goals

2999999999999 9999999992999 IIIIIIIIIIINIIDINIDINIDINIDINDINIDINIDINIINIIDINDNDNDINDNDNY

; backgammon

(<= (goal ?player 100)
(opposite ?player ?opp)
(true (bar ?opp ?value))
(greater:greaterthan @ ?value)
(true (out ?player 15))

)

; gammon

(<= (goal ?player 66)
(opposite ?player ?opp)
(true (out ?opp 0))
(true (out ?player 15))

)

; single game

(<= (goal 7?player 33)
(opposite ?player ?opp)
(true (out ?opp ?value))
(greater:greaterthan @ ?value)
(true (bar ?opp 0))
(true (out ?player 15))

2999222992229 2233322233222 IIIDIDIDINIDIDIDIDIDINDNDNDNDIDIDINDNDNDNDIDIDNDNDNDINIOIDY

;Functions:

; get opposite player

(opposite black white)

(opposite white black)

; get number of pieces on a position

(<= (getpieces ?pos white ?value)
(true (point ?pos ?value ?x))

)

(<= (getpieces ?pos black ?value)

(true (point ?pos ?x ?value))

)

; All pieces in home board

(<= (allhome black)
(true (bar black 0))
(true (point 24 ?i 9))
(true (point 23 ?i 9))
(true (point 22 ?i 9))
(true (point 21 ?i 0))
(true (point 20 ?i 0))
(true (point 19 ?i 9))
(true (point 18 ?i @))
(true (point 17 ?i 9))
(true (point 16 ?i 0))
(true (point 15 ?i 0))
(true (point 14 ?i 9))
(true (point 13 ?i @))
(true (point 12 ?i 9))
(true (point 11 ?i 9))
(true (point 10 ?i 9))
(true (point 9 ?i 0))
(true (point 8 ?i 0))
(true (point 7 ?i 0))

(<= (allhome white)
(true (bar white 0))

(true (point 17 @ ?i))
(true (point 16 @ ?i))
(true (point 15 @ ?i))
(true (point 14 @ ?i))
(true (point 13 @ ?i))
(true (point 12 @ ?i))
(true (point 11 @ ?i))
(true (point 10 0 ?i))
(true (point 9 0@ ?i))
(true (point 8 @ ?i))
(true (point 7 @ ?i))
(true (point 6 @ ?i))
(true (point 5 0 ?i))
(true (point 4 0 ?i))
(true (point 3 @ ?i))
(true (point 2 @ ?i))
(true (point 1 @ ?i))

A.3 Black Jack

2999222299222 2932223332222 IDIDIIDIDNDIDIDIDIDINDNDNDNDIDIDINDNDNDIDIDIDNDNDNDINIOIDY

; Black Jack (simple rules)

2999999999299 9999999229929 IIIIIIDIDIDIDIDINIDIIIIDINDIDNDINDNDND

; we need a carddeck
(include carddeck)
(include greater)

(include plus)

; We have only two players
(role bank)

(role player)

; in the beginning cards are dealt
(init (phase deal 1 bank))
(init (points bank 0))
(init (points player 0))

; card points

(value carddeck:ace 11)
(value carddeck:king 10)
(value carddeck:queen 10)
(value carddeck:jack 10)
(value 10 10)

(value 9 9)
(value 8 8)
(value 7 7)
(value 6 6)
(value 5 5)
(value 4 4)
(value 3 3)
(value 2 2)

; It’s always legal to wait, when it’s not your turn
(<= (legal ?other wait)
(true (phase deal ?x ?player))
(opposite ?player ?other)
)
(<= (legal ?0other wait)
(true (phase play ?player))
(opposite ?player ?other)

2299222292222 3222333222332 NDIDIDIDIDIDNDNDIDIDIDINDNDNDNDIDIDINDNDNDNDINDIDNDNDNODINIOIDY

; in the dealing phase players get two cards
(<= (legal ?player (get (visible ?player getcard)))
(true (phase deal ?x ?player))

60

(<= (random getcard @ ?card)
(true (hascard ?player ?color ?value))
(carddeck:card ?card ?color ?value)

(<= (random getcard 1 ?card)
(carddeck:card ?card ?color ?value)
(not (true (hascard ?player ?color ?value)))

)

; save dealt cards

(<= (next (hascard ?player ?color ?value))
(does ?player (get ?card))
(carddeck:card ?card ?color ?value)

)

(<= (next (hascard ?player ?color ?value))
(true (hascard ?player ?color ?value))

)

; compute and update points of players

(<= (next (points ?player ?points))

(does 7?player (get ?card))

(carddeck:card ?card ?color ?value)
(value ?value ?newpoints)

(true (points ?player ?oldpoints))
(plus:plus ?o0ldpoints ?newpoints ?points)

)

(<= (next (points ?player ?value))
(true (points ?player ?value))
(does 7?player (wait))

)

(<= (next (points ?player ?value))
(true (points ?player ?value))
(does 7?player (finish))

)

; Carddealing phase-order

(<= (next (phase deal 1 player))

(true (phase deal 1 bank))

)

(<= (next (phase deal 2 bank))
(true (phase deal 1 player))

)

(<= (next (phase deal 2 player))
(true (phase deal 2 bank))

)

(<= (next (phase play player))
(true (phase deal 2 player))

61

62

; Play phase
(<= (legal ?player (get (visible ?player getcard)))
(true (phase play ?player))
(true (points ?player ?value))
(greater:greaterthan 22 ?value)
)
(<= (legal ?player finish)
(true (phase play ?player))
)
; The opponent only gets a ’get’ move
(<= (next (phase play ?player))
(true (phase play ?player))
(does 7?player (get))
)
(<= (next (phase play ?player))
(true (phase play ?player))
(does ?player (get ?card))
)
(<= (next (phase play bank))
(does player (finish))
)
(<= (next (finished))
(does bank (finish))
)
; send the points (because they are invisible to the opponent)
(<= (legal ?player (send ?mypoints))
(true (finished))
(true (points ?player ?mypoints))

(<= (next (points 7?player ?points))
(does ?player (send ?points))

(<= (next (done))
(does ?player (send ?points))

299999999999 9999999999929 9339229 IIIIIIIIIIDIDINIDINIDINIDINIDINIDINIINIINIIDINDINDINDINDNDNDY

; Goals
; 1. The one wich has more points wins, when he has less than 22
(<= (goal ?player 100)

(true (points ?player ?playerpoints))

(opposite ?player ?opp)

(true (points ?opp ?opppoints))

(greater:greaterthan ?playerpoints ?opppoints)
(greater:greaterthan 22 ?playerpoints)
)
; 2. One when he has less than 22 and the opponent has more than 21
(<= (goal ?player 100)
(true (points ?player ?playerpoints))
(opposite ?player ?opp)
(true (points ?opp ?opppoints))
(greater:greaterthan 22 ?playerpoints)
(greater:greaterthan ?opppoints 21)
)
; If both players have the same points, the bank wins
(<= (goal bank 100)
(true (points bank ?playerpoints))
(true (points player ?playerpoints))
(greater:greaterthan 22 ?playerpoints)
)
; If one player has more then 21 points he looses the game
(<= (goal 7?player 0)
(true (points ?player ?playerpoints))
(greater:greaterthan ?playerpoints 21)
)
; Get a terminal state
(<= terminal
(true (done))
)
; get the opponent player
(opposite bank player)
(opposite player bank)

63

	Introduction and Motivation
	Structure of the Thesis

	Theory and Related Work
	Expertsystems and Uncertainty
	Early Approaches to General Game Playing
	Game Description Language
	Current Research

	Extensions to the GDL: The World Description Language
	The Need of an Extension
	Probability Based Moves: The random relation
	Incomplete Information: The visible relation
	Realtime Systems: The realtime axiom
	Library functionality: The include relation

	Experimental Results and Discussion
	Backgammon
	Black Jack
	Chess Clock
	Discussion

	Conclusion and Future Work
	Maskin Leke
	Verden

	References
	Games in WDL
	The Library
	Dicing
	Carddeck
	Arithmetic Functionality

	Backgammon
	Black Jack

