
World Description Language - A logical
Language for agent-based Systems and

Games

Baelor esis

Freie Universität Berlin

Faberei für Mathematik und Informatik

Author:
Johannes Kuli

Advisor:
Dr. Marco Blo

Supervisor:
Prof. Dr. Raúl Rojas

September 21, 2009

2

Eidesstattlie Erklärung

I erkläre an Eides sta, dass i die vorliegende Baelorarbeit selbständig und ohne fremde
Hilfe verfasst habe. I habe dazu keine weiteren als die angegebenen Hilfsmiel benutzt und
die aus anderen Quellen entnommenen Stellen als sole gekennzeinet.

Berlin, September 21, 2009

4

Summary

General Game Playing is a part of Artifical Intelligence (AI) resear, whi handles AIs
playing more than one game. Traditional Computer Game Playing programs were only able
to play a single game, where human beings are able to understand hundreds of games. To
create AIs, whi can play more than one game a formal language is needed, in whi game
rules can be defined. Many approaes for su a language have appeared, but all of them do
not cover all games.
e most accepted language in this domain is the Game Description Language (GDL). To-

day there are many AIs playing GDL games at a notable competitive level. Nevertheless the
GDL only covers deterministic, round-based games with complete information.
is thesis discusses earlier game languages and then introduces an extension to the GDL,

the World Description Language (WDL), whi aieves the following goals

• random events are possible in WDL games (already published by the author in [1])

• incomplete information games could be described in WDL

• the WDL is the first language to describe realtime games

• a library system for faster development of games is added

All these features are aieved while keeping the WDL profoundly compatible to the GDL.
A framework for the WDL is published under the GNU General Public License at [31].
e contributions of this thesis are:

• An overview over former general game playing languages

• e extension of the GDL with the above mentioned features

• e development of an extension to the Game Controller, whi can handle these new
features

• e development of games in WDL, to show the new features

Contents

1 Introduction and Motivation 8
1.1 Structure of the esis . 9

2 eory and Related Work 10
2.1 Expertsystems and Uncertainty . 10
2.2 Early Approaes to General Game Playing 12
2.3 Game Description Language . 16
2.4 Current Resear . 19

3 Extensions to the GDL: e World Description Language 22
3.1 e Need of an Extension . 22
3.2 Probability Based Moves: e random relation 24
3.3 Incomplete Information: e visible relation 27
3.4 Realtime Systems: e realtime axiom . 28
3.5 Library functionality: e include relation 30

4 Experimental Results and Discussion 33
4.1 Bagammon . 33
4.2 Bla Ja . 35
4.3 Chess Clo . 37
4.4 Discussion . 38

5 Conclusion and Future Work 40
5.1 Maskin Leke . 40
5.2 Verden . 41

References 42

A Games in WDL 45
A.1 e Library . 45

A.1.1 Dicing . 45
A.1.2 Cardde . 45
A.1.3 Arithmetic Functionality . 47

A.2 Bagammon . 47
A.3 Bla Ja . 60

6

Anowledgments

I would like to thank Prof. Dr. Raúl Rojas for accepting this thesis. His lectures gave me
a new perspective to computer science and mathematics and lead me to game programming
and artificial intelligence.
Special thanks go to my advisor Dr. Marco Blo, who supported me in every way it was

possible. I can not imagine a beer advisor.
Furthermore I thank the workgroups artificial intelligence and game programming for great

working conditions.
I thank Benjamin Bortfeldt for interesting ideas and discussions about the “World Descrip-

tion Language” and Stefan Oe for his English skills.
anks go also to the computational logic workgroup of the Tenise Universtät Dresden

for publishing their GDL framework under the terms of the GPL, whi makes it possible to
extend it.

7

Chapter 1

Introduction and Motivation

Since the beginning of computer science game-playing computer programs were in focus of
researers. From Konrad Zuses very first Chess-program in the Plankalkül [14] to solving
the sophisticated game of eers [7] mu work was applied.
For a long period Chess was the Drosophila melanogaster of artificial intelligence (AI)

resear. One very notable event was the victory of the computer program “Deep Blue” over
the officiating Chess worldampion Kasparov in 1996 [15]. Since then many beer programs
were developed and won against grand-masters. Although most of these engines have their
strength from human expert knowledge, maine learning algorithms were tested in Chess
engines as well [2].
Because computer Chess programs now are stronger than every human player, other games

have been more focused recently. For the complex game of Go typical Chess-concepts were
quite unsuccessful, so Monte Carlo methods were developed and applied [17]. Today Go
programs play at a notable competitive level.
Another example for newer AI resear is Poker, whi introduces many new concepts in

comparison to Chess and Go: Multiplayer, incomplete information and probability. AIs for
poker do not only have to use their own knowledge, but have to model the opponents to find
successfully strategies [11].
Unfortunately all these programs are only capable of playing a single type of games. A

grand-master Chess engine refuses to play Tic-Tac-Toe. While human beings play hundreds
of games, computer programs are highly limited in their capabilities.
A new allenge for AI resear is an AI whi can play all games. If su an AI was

available, not only strategies for classical games could be created but also solutions for abstract
or game-theoretic games, as they are described by von Neumann and Morgenstern [30], could
be found. Even economic or biological systems could be simulated and general AI concepts
could be developed.
At the workgroup game-programming of the Freie Universität Berlin the AI framework

jGameAI was developed [4]. It focuses on maine learning and sear algorithms, whi
were implemented generically, to fit almost every game. Unfortunately every new games
has to be implemented separately and the core of an AI, the evaluation function, has to be
generated by hand for ea game.
Since game analysis is mainly made by human experts only, AIs does not really understand

the game, but win only through computing power [4, 23]. To automatically analyze games

8

Year Program Workgroup
2005 ClunePlayer University of California
2006 Fluxplayer Technische Universität Dresden
2007 CADIAPlayer Reykjavík University
2008 CADIAPlayer Reykjavík University
2009 ary-distant Université Paris VIII

Table 1.1: World Champions of the AAAI-Competition since 2005.

and build general AIs, a maine-readable description of game rules must be available. A
formal language for game descriptions is needed.
Several approaes to create su a language have been made in the last years [23, 8, 9].

e most accepted one is the “Game Description Language” (GDL) [3]. Many successful
players have been developed to play in GDL described games, and a world ampionship is
held during the AAAI conference ea year at the GIGA workshop. In table 1.1 the world
ampions since 2005 are listed. At the Freie Universität Berlin is a group, whi develops
the GDL player Maskin Leke (Norwegian for “playing maine”) [31].
Nevertheless the GDL has some limitations in describing games. Random events can not

described, so many classical games as well as most complex systems can not be wrien in
GDL. Incomplete information is also not representable. Most economic games therefore can
not be described. And for biological systems or many video games realtime capabilities are
needed.
In this thesis an extension to the GDL is introduced, whi makes it possible to describe all

these features, while keeping all language construct intact.

1.1 Structure of the esis
In Chapter 2 different general game playing approaes and their advantages and disadvan-
tages are described. Additionally related approaes to the topics of the world description
language are described. e GDL syntax and semantics are discussed detailed.
In Chapter 3 the new language “World Description Language” (WDL) is introduced as

an extension to the “Game Description Language”. All new concepts are described and the
syntax and semantics of language constructs are introduced.
Aer that some examples of games and systems in the WDL are described in Chapter 4.

ere is shown whi is possible with the new constructs by showing different problems and
solutions.
At the end in Chapter 5 both possible AIs as well as further language extensions are dis-

cussed.

9

Chapter 2

eory and Related Work

In this apter the development of General Game Playing (GGP) and related resear is de-
scribed in ronological order. It starts with expertsystems, whi are problem solving pro-
grams and have some similar problems as game description languages. en early approaes
like metagame, whi reinvented the idea of GGP, are introduced. Aer that the GDL, the
language to extend, is described in detail. And at the end of the apter the current state of
resear in general game playing languages is discussed.

2.1 Expertsystems and Uncertainty

In the 1950’s appeared the first expertsystems to solve general problems. Although most of
them were specialized to a single topic, the inference maine concepts were applicable to
a wider range of domains. Expertsystems are equipped with knowledge from experts about
a specific topic. ey are not limited to reproduce this knowledge, but also to infer logical
conclusions from the given knowledge-base. Expertsystems oen use logical languages like
Prolog and reasoning, like many current general game playing languages do [10].
One problem is, that in many domains, where expertsystems are applied, statements are

not true or false, but afflicted with some uncertainty. Human experts are not always sure
about their knowledge, but phrase it oen like: “If the car does not start and the radio works,
in 90% of the cases the problem is an empty fuel tank.”
Expertsystems need stoastic functionality to describe su knowledge. But since most

logical inference maines do not support stoastic elements, an own solution must be im-
plemented. A common way to do that is to apply uncertainty factors to facts and rules.
One popular system using this concept was the medical expertsystem MYCIN wrien in

LISP. It was developed at the University of Stanford in 1972 [27]. Disease symptoms are
typical examples of uncertain facts. e patient and the doctor may be not certain about
them and the connection of them and the symptoms may not lead to a clear diagnosis.
Facts and rules can be provided with certainty factors. ey lie in [−100, 100], where−100

is a probability p(e) = 0 of an event e and 100 is p(e) = 1. In MYCIN these certainty factors
are added to statements with a starting cf followed by the actual certainty factor.
Consider a simple disease recognition system. It has the rule, that a person who has fever

and headae, this person has flu with a probability of 95% (certainty factor 90). Now a person
has fever, whi can be tested with a fever-thermometer, so this has the certainty factor 100.

10

Figure 2.1: Certainty factors are computed locally and the heuristic values are propagated
through the decision tree. Errors made by the heuristic persist and accumulate.

But he is not sure about the intensity of his headae, so this is considered as 90% headae,
whi is a certainty factor of 80. Su facts and rules look like the following simple system:

headache cf 80

fever cf 100

Rule 1

if headache and fever

then disease is flu cf 90

is uncertainty factors must then be propagated through the sear of the inference ma-
ine and combined in a proper way. Because there is no knowledge about the way in the
decision tree in MYCIN these combination is computed locally (see figure 2.1) with the fol-
lowing rules, whi gives good empirical results.

CF =
CFrule · CFpremise

100

If there are more than one rule, whi must be combined, MYCIN uses the function

CF (X, Y) =


X + Y (100−X) for X > 0, Y > 0

X + Y
1−min(|X|,|Y |) for X < 0 or Y < 0

−CF (−X,−Y) for X < 0, Y < 0

to compute the uncertainty factor. ese values does not meet with the correct probability
values, whi are

p(X, Y) = p(X) + (1− p(X)) · p(Y).

Especially negative parameters can lead to wrong values. e second rule

CF (X, Y) =
X + Y

min(|X|, |Y |)

11

is asymmetric (see figure 2.2). So for the inversion of a rule the inequality CF (Y,X) 6=
CF (X,Y) is valid.
If we consider the example

Rule 1

if fever

then disease is flu cf 50

Rule 2

if pustule

then disease is flu cf -80

the certainty factor is computed with rule number two, whi is

CFflu(50,−80) = 50 +
−80

1−min(|50|, | − 80|)

= 50 +
80

49
≈ 51.63

While the inversion leads to the different result

CFflu(−80, 50) = −80 +
50

1−min(| − 80|, |50|)

= −80− 50

49
≈ −81

ese locally computed heuristic probability values are used in the following conclusions and
possible errors will be propagated through the decision tree and accumulated. In games with
random events are correct values needed to get fair results, so this system is inappropriate for
GGP systems.

2.2 Early Approaes to General Game Playing
Already in the 1960’s Jacques Pitrat wrote the first general game playing program [28]. He
described games as algorithms. One algorithm whi enumerates all legal moves and one
algorithm whi indicates how to win.
His language has control statements like other programming languages (arithmetic state-

ments, if, goto, etc.) as well as game specific statements. ese are the result statements,
whi indicates a victory of a player or draw, and the move statement, whi describes legal
moves. Four types of moves are possible: Moving a piece from a field to another, capturing a
piece, adding a piece to a field and replacing a piece by another piece.

12

Listing 2.1 American Checkers as SCL-Game in Metagame format (listing from [23])

13

Figure 2.2: The le tree results in a certainty factor of−82 which correspond with the prob-
ability p(e) = 0.09. The right tree emerges from swapping the inner nodes, but
results in the certainty factor of 52, which correspond with the probability of
p(e) = 0.76. The MYCIN rules are asymmetric and both values does not match
with the correct probability p(e) = 0.775.

His program was able to play several board games, including Chess, Tic-Tac-Toe and go-
moku. Aer this first general game playing program a long time only game-specific AIs were
developed.
e first modern general-game-playing approa was Barney Pells Metagame [24]. He

specified a specific class of games, he called symmetric Chess-like (SCL) games.
SCL describes board-games on a rectangular board. Only two-player games can be de-

scribed. e fields on the board are ordered like a Chess or eers board but not restricted
in their size. Even non-quadratic boards are allowed. A board can be represented by a 2-
dimensional matrix. It is possible to create games, where pieces can move from the right side
of the board directly to the le side, like the board is projected to a cylinder.
All SCL-games are symmetric, whi means that both players have the same pieces and

the same rules. So every rule must have an inversion. All rules can specified for one player
only, and the inversion implies the rule for the opponent.
e rules in the Metagame-format are described by describing legal actions of the different

pieces. ere are movement actions and capturing actions.
Movements are defined by their direction and symmetry constraints. Even the two possible

types of movement hop and ride can be specified. Hop means a move does not affect the fields
between start- and endpoint and ride means that a piece moves over every field between start-
and endpoint. Symmetry-constraints can simple mirror moves. For example a rook in Chess
can move symmetrically to the le and the right, forward and baward. is is defined by
(from [23])

movement

ride

<1,0> symmetry all_symmetry

end movement

14

Movements can also be defined by disjunctions of other movements. is can for example be
done for movements of a queen in Chess, whi is the disjunction of rook and bishop moves.
Captures are similar to movements but have an effect to other pieces, while movements

only affect themselves. Capture moves can differ from normal moves. ere are three types of
capturing in Metagame: clubbing, hopping and retrieval. Clubbing is the normal Chess kind
of captioning opponent pieces. A piece moves to an opponent piece and thus it is removed.
Hopping is the capturing type in eers. A piece hops over another piece to capture it.
Retrieval is quite uncommon. A piece moves away from another one to capture it.
Capturing can have different effects on the captured piece. It can be simply removed or it

is possessed by either the player who captures the piece or the opponent. If it is possessed
by one player this player can bring the piece ba to the game in a later turn at any empty
field. Capturing can be compulsory, as in many eers variants. Additionally continued
capturing can be allowed, this allows several pieces to be captured in one turn.
e last concept in Metagame is promoting. When a piece reaes the promoting territory

it is replaced by another piece. In Chess for example a pawn can be replaced by any other
piece when it reaes the last row.
Start positions and winning conditions in metagame are described by global constraints.

Besides simple winning conditions, complex compound goals can be defined.
A complete game in Metagame-format is shown in listing 2.1. Although Metagame was an

important step, it covers a very small set of games. erefore other languages were developed.
A similar class of games as Metagame can be described with Multigame [19]. e orig-

inal implementation gets an game description and compiles it to a ANSI-C program, whi
includes an evaluation function. is program gets a board state as input and offers the best
evaluated move as output.
Since Multigame has the above mentioned input seme no start position can be defined.

e game rules are described by legal moves. e description is very close to the action a
human being does. A virtual hand pis pieces up, moves them around and puts them ba
to the board. e rules declare in whi directions this hand may move and whether it can
hop over other pieces or not. Longer moves are repeatings of the origin move.
Amain clause is the start point, where all moves are listed. Evenwin or loose conditions are

described here. A try statement can be used, similar to if-clauses in descriptive languages,
to detect certain paerns, whi make moves legal or are winning situations for example.
Several other language constructs can be used to implement complex game situations.
e main introduction of Multigame is its capability of one-player and multiplayer games.

e number of players in Multigame is in contrast to Metagame not limited to a specific
number. is introduces a big range of games, but nevertheless only a small part of all games
can be described. Listing 2.2 shows a complete game in the Multigame format.
In the late 1990’s the commercial product Zillions of Games was released [35]. It is a game

engine whi is capable of playing several games described in a LISP-like language. It can
handle not only board games, but games must be reducible to board games. It includes a
graphical frontend for its games. us the description of the games can have graphical options.
ere is also an API for AI engines, where different engines can be plugged-in. Its own engine
is not published.

15

Listing 2.2 The game Tic-Tac-Toe in the Multigame format (listing from [21])

dimension (3,3)

pieces

{

mark ’X’ ’O’

}

main = try new_mark else draw.

new_mark = find empty field,

replace by own mark,

try [test three_in_a_row, win].

three_in_a_row = find own mark,

alldir,

repeat 2 times [step, points at own mark].

2.3 Game Description Language
e most accepted language nowadays comes from the University of Stanford, where a team
around Miael Genesereth developed the Game Description Language in 2005 [3]. A lot of
AIs for it were made and compete against ea other at the yearly hold GIGA workshop [34].
eGDL is a logical language, whimeans, that rules of games are described by logical im-

plications, and legal moves or winning situations are found by reasoning. Logical languages
are oen used in expertsystems (see section 2.1) .
e syntax of the GDL is in the Knowledge Interange Format (KIF) prefix notation, whi

is meant to be an maine-readable interange format for knowledge [25]. In GDL there are
terms, relations and implications. A term is either a variable or an atom, whi is an object
constant. Variables in GDL start with an question mark, followed by a string. Atoms are
simply strings.

atom

?variable

A relation consists of a functor, whi we can consider as the name of the relation, and n
parameters, whi follow the functor.

functor p1 p2 ... pn

Ea parameter can either be a term or a relation. If it is a relation it has to be in braets.

functor1 p1 (functor2 p2a p2b) p3

Implications have a head, whi is the conclusion of it, and a body holding preconditions. If
all preconditions are true, the conclusion becomes true. e implication symbol <= is wrien
prefix.

16

Relation Functionality
role <player> defines the number of players and their names
init <state> describes the initial game state
true <state> checks whether facts are in the game state or not
does <player> <move> describes the last actions done
next <state> describes the game state in the next turn, depending

on preconditions
legal <player> <move> defines legal moves at a specific situation, depending

on preconditions
goal <player> <value> rates specific situations with values between 0 (worst)

and 100 (best)
terminal defines terminal states in the game state

Table 2.1: List of reserved relations in the GDL

<= (head_functor p1 p2 ... pn)

(body1 p1 ... pn)

(body2 p1 ... pn)

...

(bodyn p1 ... pn)

A relation is true if it is either reasoned through an implication or it is a defined as a constant
somewhere in the source code. Variables get unificated by a batraing system similar to
Prologs inference maine [16].
To create games in GDL there are the eight predefined, game related relations role, init,

true, does, next, legal, goal and terminal. eir semantics are shortly described in table
2.1.
In the GDL framework there is a difference between facts whi are globally true, and

whi are true in the game state. ings like arithmetic functions can be defined globally,
they stay true the whole time a game is played. However, they cannot be anged during
run-time.
At the other hand everything whi is subject of ange during a game must reside in the

game state. at can be positions of pieces, the current turn number or the score a player has.
Ea turn the game state is reset. All facts that should consist must copied from the previous
turn state with the next relation. All relations affect only the game state and never the global
scope, as this is not angeable.
ese predefined relations can be combined to create complex games. An excerpt can be

seen in listing 2.3. It shows the only legal move in Tic-Tac-Toe, whi is marking a blank cell.
Since all these relations are deterministic and does not have access to extern devices or

files, no random events can be simulated with the GDL.
e GDL also has a communication protocol, whi manages the transmission of moves

between the players. To ensure all players only perform legal moves and do not excess their

17

Listing 2.3 An excerpt of Tic-Tac-Toe as a GDL game. This are the preconditions and the
result of a move. Note that all relations not mentioned in table 2.1 have to be defined some-
where else in the source code (listing from [3]).

(<= (legal ?player (mark ?x ?y))

(true (cell ?x ?y b))

(true (control ?player))

)

(<= (next (cell ?x ?y ?player))

(does ?player (mark ?x ?y))

)

(<= (next (cell ?x ?y b))

(does ?player (mark ?m ?n))

(true (cell ?x ?y b))

(distinctCell ?x ?y ?m ?n)

)

playtime an infrastructure for managing a game must be available. In GDL the Game Master
or the Game Controller (depending on whi implementation is used) provides this [32, 33].
It sends the start message to all players, whi contains the description of the game in GDL,

a unique mat ID to identify a specific game, if more than one game is handled by a player
or the Game Controller (GC), and two clo values. On the one hand the startclo, whi
defines the time until the game starts. e players can use this time to prepare themselves. On
the other hand the playclo. is is the time a player has for ea move. e start messages
has the following format.

(START <MATCHID> <ROLE> <DESCRIPTION> <STARTCLOCK> <PLAYCLOCK>)

Aer ea move the GC sends the played moves to the players. ey must compute the
current game state by themselves with the corresponding GDL description. e moves are in
the same order as the player roles appear in the GDL description. Since ea player performs
exactly one move ea turn, this order makes the moves in the play message unambiguous.
e message format is the following.

(PLAY <MATCHID> (<MOVE1> <MOVE2> ... <MOVEn>))

If a player exceeds its play time or does not return a legal move, the GC ooses a random
move for that player. If a terminal state is reaed the keyword PLAY in the message is replaced
by STOP. All players can now compute the final state and their goal values.
With this communication aritecture no incomplete information is possible. Ea move is

send to every player, whi has the complete rule description. Also realtime games can not be
described, since the GC defines the turn length and sends random moves if one player does
not react.

18

Figure 2.3: The TD-Probn(λ) learning algorithm, an reinforcement learning variant intro-
duced for jGameAI, can handle both multiplayer games and non-deterministic
games. Nevertheless it needs an evaluation function J to reason about the pay-
off of a specific game-state (figure from [4]).

2.4 Current Resear

e AI framework jGameAI was developed at the Freie Universität Berlin [4]. It abstracts
from specific games in a way that it has generic sear algorithms for the game tree. It uses
an MiniMax Version with a lot of enhancements. Multiplayer and non-deterministic games
can be handled by its sear and pruning concepts are applied. Also generic maine learning
algorithms are implemented in this framework to get beer results (see figure 2.3). In jGameAI
all game rules must implemented in Java. So no game-specific language is available and games
can not be added by runtime.

To implement an AI for a new game with the jGameAI framework an evaluation function
is needed, to give the sear algorithm an indication for the payba of the current position.
Although this sound easy, the evaluation function is the core of an AI. Only generic func-
tionality, used by almost all game AIs can be used from the framework.

A relative new approa for general game playing is the Extended General Gaming Model
(EGGM) [8]. It uses the scripting language Python as base to create a framework for im-
plementing games. It contains a set of classes, whi are game-related. Its object-oriented
approa causes quite structured source-code. Since it offers a graphical frontend to the user,
game descriptions can have graphical options.

19

In the EGGM games consist of two things, namely equipment and rules. All physical things
in a game are equipments, su as pieces, dices as well as players. Rules describe how the
equipments interact with ea other, mainly the players with the other equipments.
Every equipment is hold by a table. Areas build graphs, where equipment can be placed.

e most important equipments are elements. ey describe typical game-pieces, su as
cards, boards, pieces, etc. Every element can have different aributes, to identify colors,
types or values. Equipment can be stored in assortments, to create for example card des.
ere are two special equipments: dices and score. Dices are used to generate random

events and score holds point-values for the players.
Rules are the second thing in EGGM, whi defines a game. ey define the number of

players in a game and the order of their turns. e initial state of all equipments is arranged in
the rules as well as the winning conditions. And of course the rules explain the legal moves.
ere are several move types, whi can be used in EGGM. ey can move pieces from

one position to another, add or remove aributes to equipment, shuffle or sort assortments or
simply do nothing. ese simple moves can be combined to create complex move variants.
e EGGM is implemented in Python and all games developed for it are in fact Python

programs. So the EGGM is not a real game language, but a python framework to implement
games. Also the AIs are integrated in the framework and have to be implemented in Python,
because they have to call Python methods to interact with the game engine.
Many of the described features of the EGGMwere not implemented at publishing date and

the framework is not available yet.
Currently the most comprehensive language to describe games is the Regular Game Lan-

guage (RGL) [9]. It can handle games with complete or incomplete information and it is
capable of random events. e RGL defines the game with logical predicates like the GDL,
but uses the Prolog syntax instead of the KIF notation [16]. Prolog uses an infix notation for
the implications and can have infix functions as well.
A game consists of facts and rules as in GDL, but RGL can additionally handle lists. ere

are a lot of predefined relations, with some only being shorthanded versions of complex tasks.
In RGL there are pieces, whi describe the game equipment. Pieces can have two sides

to realize things like playing cards, where opponents can see that there are cards, and how
many cards there are, but not whi colors or values they have. All things in RGL are pieces,
whi are placed on a board. Even in card games or similar, things are placed on a board, to
have a specific position to access them. A board is represented by a graph. A board consisting
of edges and nodes can simply be initialized in RGL with the statement

grid(n,m).

Where n and m are the numbers of fields in the width and the height of the board. is is
the shorthand version of initializing all edges and nodes by hand.
e initial state of a game is defined similar to the GDL with the init relation. For incom-

plete information the pieces of the game has an visibility aribute. For the initial visibility
there is the relation initVisible. It is possible to apply different visibility to the ba and
front of pieces.

20

Listing 2.4 A short excerpt of the game Tic-Tac-Toe in the RGL (listing from [9]).

moveprecon(Player,place(Piece,To)):-

whoseturn(Player),

owner(Player,Piece),

onboard(To),

not(pieceAt(_,To)).

moveresult(Player,place(Piece,To),

[

place(Piece,To),

reveal(all,Piece,To,front),

replace(Player,whoseturn,Next),

reveal(all,Next,whoseturn,front)

]

) :-

nextPlayer(Player,Next).

Random events are handled by the roll and the shuffle statements. While roll puts
a randomly osen piece on a specific position on the board, shuffle takes all pieces on a
specific node and brings them in a new order.
A very important thing in games are the legal actions. ey are defined by the two rela-

tions moveprecon and moveresult. e moveprecon statement describes the preconditions
whi must be met to allow this move. e moveresult statement defines what happens by
proceeding a move. ese results can differ depending on some conditions.
e move results can be either visibility aribute anges or one of the following for move

relations: place, remove, move, replace. Where move and replace are only shorthand ver-
sions of combinations of the other two. To place a piece on a specific position, the place

relation is used, to remove it, the remove relation is used. e move statement is removing
a piece from position a and placing it on position b and replace is removing a piece from a
position and placing another piece there instead of it.
All aributes are hidden by default. is is important to create games with incomplete

information. To make them visible to one ore more players, the reveal statement is used.
An excerpt of a game can be seen in listing 2.4.

21

Chapter 3

Extensions to the GDL: e World
Description Language

In the last apter current available game description languages were introduces. In this
apter it will be shown, that there is no single language whi is capable of all needed
features to describe nearly all games. en there is an extension to the former described
GDL introduced, whi can handle a mu bigger range of games, while being compatible
to it but as short as possible. Ea new feature is described in detail. e WorldController,
whi handles the new language, can be found at the Website of the GGP group of the Freie
Universität Berlin [31].

3.1 e Need of an Extension

Although there are many languages to describe games, as introduced in apter 2, all of them
la some features to mat all requirements or have several preconditions to games, that
limit the number of describable games (see table 3.1).
e most important missed feature are random events. ere are hundreds of games whi

relate on random events, both classical board or card games and abstract games. Describing
games without having the ability to create random events during the game play is mostly
not possible. Interestingly there are not mu languages, whi provide this feature or needs
workarounds like Zillions of Games, whi needs an invisible player, who plays random
moves. Even in the EGGM, whi is meant to have random events, they are not implement
yet [8]. So this very usual game feature is up to now only available in the RGL.
Associated with random events is incomplete information, whi only makes sense if there

are random events available. Otherwise if all events are deterministic a player could re-
member all moves and therefore compute the current state. Especially computer players are
capable of this possibility. No language except the RGL and EGGM, whi has without ran-
dom events no reasonable use of it, offers incomplete information. Nearly all card games and
lots of board games need incomplete information.
Akin to incomplete information is communication, whi is to set information only read-

able by a special group of other players including of course all. Communication is the base for
cooperation in games. Only if players could communicate whi ea other they can work
together. Communication can also used to fool other players and take advantage of that. As

22

X - The language has this feature
P - This property is a precondition
1)Metagame can only handle two player games
2)Random events in Zillions of Games can be simulated by an invisible player who play
random moves
3)Zillions of Games is a commercial framework
4)Games can be visualized with the help of stylesheets

Table 3.1: The properties of the different description languages.

23

communication is one pillar of human intelligence and strategy AIs should be able to utilize
it as well.
When having these features available, most classic games could be described in a language.

Nevertheless there are mu more games imaginable as for example video-games, biological
systems or economic systems. All these games are not based on rounds, but are realtime
games. is means, that players are not treated to do a move, but can decide do act whenever
they want to, in regard to the rules of the game. None of the described languages can model
realtime games at all.
As shown there is no language available today, whi can describe nearly all games. But

there are some languages whi mat a lot of requirements. So it is reasonable to not imple-
ment a complete new language, but extend an existing one. Although the RGL seems to be
the most complete language (considering the not implemented EGGM features), it has some
major disadvantages.
e RGL as other game languages, too, is very specific to a concrete range of games. Typical

game concepts are implemented as language features instead of implementing a library func-
tionality and then offering a standard library with these features. So these languages do not
really have a clean design, whi offers a small set of needed functionality and the possibility
of extending the game through out libraries. For example the statements roll and shuffle

are simply reducible to the concept of random events, but both are language keywords.
e GDL does not implement so many game features, but is designed to be clear and small.

However, it has no library functionality as it is known from programming languages like Java
or C++, whi was one reason they became as famous as they are today. Nevertheless the
GDL is widely used nowadays. ere is a big community developing AIs for the GDL, whi
makes it the best candidate to extend.
Another advantage of the GDL is the open source infrastructure, whi is available online

and a good starting point for extending the language [32, 33].
erefore the GDL was osen to extend to the new describing language, the World De-

scription Language (WDL). It is capable of describing all games known by the author as well
as a lot of agent based systems like biological systems. A simple library functionality is added
to get the possibility of generating games more easily.

3.2 Probability Based Moves: e random relation

As discussed above the most important extension in the WDL is the ability of generating
random events. ereby the need of an abstraction of concrete game concepts su as dicing
or shuffling is desirable, because they can be described in a library later. ey are simply
reducible to the basic concept of a random event. e WDL therefore needs a concept of
random events.
It is implemented as a discrete random variable, whi can enter several defined state,

describing the events, with defined probabilities. ese probabilities have to be dynamically
adaptable, since there are several possibilities of anging probabilities during a game, for
example dealing a card de.

24

Figure 3.1: Uncertainty within rules or facts can be expressed with random events. The rules
R1 and R2 are stochastically independent. Therefore the probability of the con-
clusion is p(e) = 0.1 + 0.9 · 0.75 = 0.775, as shown on the right. The WDL uses
a probability tree like the one on the le hand side. The sum is

∑
p(e) = 0.775,

which is the correct value.

To generate random events, the relation random with three parameters is introduced. Its
syntax is the following:

random <name> <value> <event>

e first parameter is a term, whi names the random variable. All n events, whi can hap-
pen according to this random event, are aaed to the same random variable and therefore
have to get the same name.
e second parameter is a positive integer ve (including zero) defining the probability of

the event e. Actually ve is not the probability. e probability of the event e, named p(e) is
computed as the usual quotient

p(e) =
ve∑n
i=1 vi
.

e third parameter is a WDL-expression describing the event e, whi occurs depending
on a random experiment.
e unification of the random variable happens (pseudo-)randomly. Because all players

have to get the same event and to avoid eating from players, the unification has to take
place at a central, not player-driven system. For that reason random variables do not get a
KIF-conform variable name with a starting question mark, but are atoms.
Since the only exange of information in WDL-games take place while carrying move-

information, there is the following restriction. A random variable can only occur in its defi-

25

Listing 3.1 Dicing in a simple board game, expressed in WDL.

(random dice 1 1)

(random dice 1 2)

(random dice 1 3)

(random dice 1 4)

(random dice 1 5)

(random dice 1 6)

(<= (legal ?player (move dice))

(control ?player)

)

nition as parameter in a random relation or in the definition of legal moves, the move-part of
a legal relation (random restriction).
A simple example of a random event is dicing in a board game. is can be expressed in

WDL as shown in listing 3.1.
e player here has the legal move move dice. e random variable dice gets unificated at

a central place, aer the player actually performs the move. Ea possible expression (defined
by the random statements) e ∈ M = {1, 2, . . . , 6} can be osen with p(e) = 1

6
as probability.

To get adjustable probabilities, the probability defining value does not need to be constant.
With implications around the random relation, the probability can be defined by the game
state.
A typical example for that is a card de, whi is dealt. Ea card has the same probability

to be the next, until it is dealt. en it has the probability p(e) = 0. is is shown in listing
3.2.

Figure 3.2: The WorldController unificated the random variable and sends the result back
to all players as a normal move. So it is guaranteed that there is no possibility to
cheat with random events and all player get the same result.

26

Listing 3.2 Dealing a card deck needs adjustable probabilities. This can be done in WDL
with implications.

(<= (random drawCard 0 ?card)

(card ?card)

(true (drawn ?card))

)

(<= (random drawCard 1 ?card)

(card ?card)

(not (true (drawn ?card)))

)

(card spades-ace)

(card spades-king)

; ...

With true random events we get mathematical correct values, instead of approximations
of heuristic functions as in implementations of expert systems (see figure 3.1).
e central place, where all information exange goes through is the WDL WorldCon-

troller. e unification of random variables have to take place here.
e random variable in a performed move is replaced by the result of the (pseudo-)random

event, done by a pseudo-random generator at theWorldController (see figure 3.2). Since there
is the random restriction, this is the only possible way to get random events in the WDL. e
replaced statement is then send to the players as a normal move. Even the player who did the
move gets the random result via this way.

3.3 Incomplete Information: e visible relation

Incomplete information are things in a game, whi are not visible to all players, su as the
card-values of the opponent in poker or other card games. Visibility should be possible to
adjust during the games.
To get incomplete information in WDL-based games, the relation visible is introduced and

has the following syntax:

visible <player> <expression>

e first parameter defines the player, whi should be able to see the information, previ-
ously defined by the role relation. e second parameter is the expression, whi hold the
information.
Incomplete information is then shown only to the defined player. e player does not reg-

ularly know, that this information is not visible to all players. In a specific game that has to
be marked by used-defined relations, if that is important. e user gets only the expression,

27

while all other players do get nothing instead of the whole visible statement. us if dif-
ferent information for different players are needed, several visible statements must be put
consecutively.
In listing 3.3 is an example of a move generating incomplete information. When player1

performs this move, this leads to the the move messages (MOVE INFORMATION ONE) for
player1, (MOVE INFORMATION TWO) for player2 and (MOVE) for player3.
Incomplete information can be put both into the game state and into the functions. So the

initial state can be different for different players, moves can have results that are visible to
only some players and functions can only be applicable for only some players.
ere are two kinds of placing visible statements. e first one is placing as function, thus

in the front of a statement. When placed this way, the following statement is not send to all
players but only to the specified one at the beginning of the game. eWDL description of the
game is in this case different for ea player. So it is possible to create games with completely
different rules for ea player, without knowing the rules of the other player. More convenient
is to create different game states for ea player, for example start configurations.

Listing 3.3 Incomplete information generated in legal moves in WDL.

;...

; information is user-defined!

(<= legal player1 (move

(visible player1 (information ?one))

(visible player2 (information ?two))

)

; pre-conditions unificating variables...

)

;...

e second kind of placing visible relations is in the head of a WDL rule. is is the more
conventional kind, whi is used to create rules whi generate incomplete information for
example by random events.
It is not possible to put visible statements in the body of a WDL rule, since a player can

not test for visibility, and therefore can not reason about conclusions (visibility restriction).
e WorldController sees all statements, and can compute all conclusions, su as legal

moves. So the players can not have wrong rules, they play aer, but all rules and information
are true. eWorldController also scansmoves for visible statements and sends the replaced
statements to the appropriate players (see figure 3.3).

3.4 Realtime Systems: e realtime axiom
eWDL is not only meant to describe classic games, but also abstract games. Many of them
can not be modeled in discrete time segments, but oen are continuous systems. So the WDL
needs the option of implement realtime games.

28

Figure 3.3: The WorldController replaces visible statements with the appropriate code, and
sends the adjusted moves to the different players.

Realtime is a global seing of a game, whi cannot anged during a game. It is quite
likely, that in future versions of the WDL other global options are needed. So a new relation
is introduced to the WDL. Its syntax is:

set <option>

is relation is used to set global game seings, and language specific options. Global seings
must not be part of a visible statement. Currently there is only one option, whi can be
set: realtime. is is the option to make a game a realtime game.
To make a game a realtime game the following relation must be added to its description.

set realtime

When seing realtime the communication protocol is anged. In round-based WDL games
(and in fact GDL games) the WorldController asks the players to make their next move. In
realtime games they actually can oose when they want to do a move.
First the WorldController sends a normal start message to all players (see section 2.3), but

the included playclo has a slightly different meaning, if the game is a realtime game. While
being the time for one move in round-based games, in realtime games the playclo is the
duration of the whole game, when it is not ended by a terminal state before. If the playclo
is zero, the game does not stop until it reaes a terminal state.
To let the player synronize themselves with the WorldController, it sends a clo signal

every hundredth second during the game to every player. Although this sounds very oen,
it is used for simulating realtime events, described later. If the clo signal is send less oen,
the game tends to be round-based, with the ability of doing nothing in every round and quite
short rounds (i.e. 1 sec length). If it would be sent more oen it exceeds the normal delay in
a local area network, whi is around 1.5 ms [22].
e clo signal has the following format:

CLOCK <MATCHID> <CLOCK>

29

Listing 3.4 The clock signal can used to unificate variables and thus periodically start things
or set up different game stages.

(<= (game_phase 2)

(greater 200 ?clock)

(clock ?clock)

)

e mat-id is the id, whi the game gets in the start message, and clo is a integer, incre-
menting in every message, until it reaes the playclo.
e play messages in the communication have a slightly different format as well.

PLAY <MATCHID> <PLAYER> <MOVE>

Since every player now can decide to make a move itself, not necessarily all players perform
a move. e WorldControler must inform ea player on every move, so it sends the acting
player with the play message.
All performedmoves were handled by theWorldController in the first-in first-served mode.

It can occur that two players send moves to the WorldController, with the first move making
the second move illegal. In this case the second move is not performed. e player is not
informed that a move is not done, but since he does not get a response play message, this fact
is obvious. e other players of course do not notice that this move was intended.
In realtime games it can occur that something happens regularly at a defined time or pe-

riodically. e clo signal can used to get those things happen. In realtime games clo is
always a function, so you can use it to unificate variables and use them, as seen in listing 3.4.
e clo function parameter is updated whenever a clo signal is sent.
e stop message also differs when the game stops by the clo. It then does not have any

move in it and is simply:

STOP <MATCHID>

If a move turns the game state into a terminal state, the stop message does not differ from
normal stop messages.

3.5 Library functionality: e include relation
Many functions in games are equal over a big range of games. Examples are dice rolling, card
stas and arithmetic functions. Implementing su functionalities for every game again is
lile efficient and error-prone. To make functions reusable the WDL needs a library system.
Ea file can be used as a library. Its source can simply included in an other file with the

statement:

include <filename>

30

e WorldController uses the environmental variable $WDLLIB to sear for library files. To
include files from the same directory ’.’ must added to this variable. is is the default value,
if there is no directory in $WDLLIB. e filesuffix ’kif’ must not be included. If a file is located
in two directories in the $WDLLIB variable, the first one is osen.
Ea file is called a module. e filename is also called the modulename. Ea module has

its own namespace, so name-clashes are minimized.
Several modules can be put in the same directory and build up a logical paage. Modules

in the same paage lie in the same directory. e paagename is the directoryname. To
include a module from a paage, the paagename have to be declared:

include <packagename>:<modulename>

e complete name of a term in a module is defined by the paagename, the modulename
and the termname seperated by colons:

<packagename>:<modulename>:<termname>

To use a relation from a module its complete name must be used. A simple dice in a library
is shown in listing 3.5.
e players do not need to know the include relation, since the WDL description of the

game they get, includes all files. Ea term is named by its complete name, even the included
terms.

31

Listing 3.5 The library file boardgames/dicing.kif simply holds all relations needed for the
provided feature of dicing. The game implementation can use the dice, with the complete
name, but do not have to implement the dice again.

;;

; $WDLLIB/boardgames/dicing.kif

;;

(random dice 1 1)

(random dice 1 2)

(random dice 1 3)

(random dice 1 4)

(random dice 1 5)

(random dice 1 6)

; EOF

;;

; game.kif

;;

(include boardgames:dicing)

; ...

(<= (legal ?player (move boardgames:dicing:dice))

(control ?player)

)

; ...

32

Chapter 4

Experimental Results and Discussion

In the last apter the World Description Language was introduced. e new features make
it possible to describe games and systems in it, whi were not possible to be defined before
in the GDL. is apter shows, how these features are used in real-life problems. e pop-
ular games Bagammon and Bla Ja are used as examples of games, whi use random
events and incomplete information. A Chess clo uses the realtime capability of the WDL.
Aer describing the concrete implementations of these games, the benefits of the WDL are
discussed.

4.1 Bagammon

Bagammon is a two-player game. e board of bagammon consists of 24 triangles, so
called points. ey are ordered twelve on ea site. e first six are the home board of the
bla player, the last six the home board of the white player. Ea player has 15 pieces in his
colour, whi are in the beginning positioned in a defined way (see figure 4.1). is board is
implemented in the init relation, as it would be done in GDL. e first number defines the
number of the point, the second number the number of white pieces, the last the number of
bla pieces on this point.

(init (point 1 2 0)) ; Point one has 2 white and 0 black pieces

(init (point 2 0 0))

;...

e bla player moves from the last to the first point, the white player contrary. In the
beginning of the game ea player rolls a dice. e one with the bigger result begins the
game. is is defined with a phase-paern. Ea game state is modeled as a specific phase,
whi is hold in the game state. eses phases are used to model specific game situations
with different possible moves. It is a extension to the simple control paern, used in many
GDL games. Bagammon starts in the pre-start phase.

(init (phase prestart))

In the pre-start phase ea player is only allowed to roll a dice. us the dice from listing 3.5
is included and used. Both players have the following legal move.

33

Figure 4.1: The start position of all pieces in classic backgammon. White moves forward,
black backwards (arrows). The first six points are the black, the last six the white
home-board.

(<= (legal ?player (roll dicing:dice))

(true (phase prestart))

)

Aer finding the beginner, ea player rolls two dices and moves two pieces forward, ea
piece the number of points one dice shows. It is possible to move the same piece two times
a round. If the pieces reaes a point where only one opponent piece lies, it captures the
opponents piece. If there are more than one opponent pieces the move is not allowed.
Actually ea player has four phases ea turn. Two to roll the dice and two to move

the pieces aerward. While the dice-roll is specified like in the pre-start phase, the move is
defined by:

(<= (legal white (move ?from ?to first))

(true (phase white move ?u))

(true (bar white 0))

(getpieces ?from white ?num)

(greater:greaterthan ?num 0)

(true (firstroll ?step))

(plus:plus ?from ?step ?to)

(getpieces ?to black ?oppnum)

(greater:greaterthan 2 ?oppnum)

)

e result of the dice-roll is saved in the firstroll (and in fact in a secondroll statement,
whi is used for the second dice-roll) statement. For the arithmetic comparison and addition
the library functionality is used again.

34

A player is only allowed to make a move if no piece was captured, whi is eed with
(true (bar white 0)). If a piece is captured, the player has to reenter it to the game in the
next round. He rolls the dices and puts the piece to the n-th field, depending on the dice-roll. If
he cannot set the piece to the according points, because opponent pieces blos them, he must
wait until he can reenter his pieces. Reentering is performed with the following statement,
whi is quite similar to the normal move.

(<= (legal white (move 0 ?to first))

(true (phase white move ?u))

(true (bar white ?value))

(greater:greaterthan ?value 0)

(true (firstroll ?step))

(plus:plus 0 ?step ?to)

(getpieces ?to black ?oppnum)

(greater:greaterthan 2 ?oppnum)

)

e goal of the game is to get all pieces out of the board. A player can start geing them out,
when all his pieces are in his home-board. en he can move pieces over the last point and
then get them out. So a third kind of move must be defined:

(<= (legal white (move ?from out first))

(true (phase white move ?u))

(true (bar white 0))

(allhome white)

(getpieces ?from white ?num)

(greater:greaterthan ?num 0)

(true (firstroll ?step))

(plus:plus ?from ?step ?to)

(greater:greaterthan ?to 24)

)

All this statements are possible in GDL as well. Only the dice rolling and the library function-
ality is new in the WDL. Nevertheless implementing Bagammon was not possible before
having the random event extension.
e complete source code of the WDL-Bagammon implementation can be found in Ap-

pendix A.2. All included files can be found in Appendix A.1.

4.2 Bla Ja

Bla Ja is a very popular card-game. e version described here is a very simple version,
more like the fren “Vingt Un”. e goal of the game is to get points as near to 21 as possible,
but no point more.

35

To keep it simple, in this version the bank plays against only one player. In GDL it was not
possible to deal with cards. erefore random events and incomplete information is needed.
In the WDL card-stas can be handled. Since many games need a cardsta it was moved to
a module, whi defines the cards, so they can reused later.

(card sa spades ace)

(card sk spades king)

(card sq spades queen)

(card sj spades jack)

(card st spades 10)

;...

When cards are dealt only the player who gets the card should know, whi card he has got.
Of course no card should be dealt twice.

(<= (legal ?player (get (visible ?player getcard)))

(true (phase deal ?x ?player))

)

(<= (random getcard 0 ?card)

(true (hascard ?player ?color ?value))

(carddeck:card ?card ?color ?value)

)

(<= (random getcard 1 ?card)

(carddeck:card ?card ?color ?value)

(not (true (hascard ?player ?color ?value)))

)

(<= (next (hascard ?player ?color ?value))

(does ?player (get ?card))

(carddeck:card ?card ?color ?value)

)

is four relations handle the problem. Ea player has its own deal-phase. So it is not
possible to give two players the same card in one round. e given card is only visible for the
player through the visible relation.
is is also a typical example for anging probabilities. When a card is dealt, the ance

is zero for geing the card again. Otherwise all cards have the same ance to get dealt.
Whenever a card is dealt, that is saved with the hascard relation. Since only the player who
gets the card - and of course the WorldController - knows that, this does not need to get a
visible statement. Nevertheless it has the probability of zero, because the WorldController
knows the hascard statement and therefore computes the right values.
Here is a phase-paern used as well, but Bla Ja only uses two phases: the deal phase

and the play phase. In the play phase the players are able to get more cards, with the same
get move as above or they finish their play phase.
Aer both player have finished, they have to send their points, because the other player

would not know whi player has won the game otherwise. e WorldController es for
eating automatically, because wrong points would result in illegal moves.

36

(<= (legal ?player (send ?mypoints))

(true (finished))

(true (points ?player ?mypoints))

)

(<= (next (points ?player ?points))

(does ?player (send ?points))

So both players know how many points the opponent has and can compute the winner, with
the goal statements.
e complete source code of the Bla Ja version can be found in Appendix A.3. e

card-de can be found in Appendix A.1.

4.3 Chess Clo

In GDL it is possible to describe the rules of Chess, but it is not possible to model the concept
of a Chess clo, used in Chess tournaments. In a Chess game a player has a specific time for
all his moves. So he can take his time for the more important moves, and act faster when the
move is clear. In GDL a player has the same time for ea move. With the realtime ability of
the WDL it is possible to build a traditional Chess clo. For the Chess clo the Chess game
from the Stanford server is modified [33].
First the game is made a realtime gamewith set realtime and the noopmoves are removed

from the description. A Chess clo is added by the following implication:

(<= (next (chessclock ?player ?newtime))

(true (control ?player))

(clock ?current)

(true (chessclock ?player ?oldtime))

(successor:++ ?oldtime ?newtime)

)

Now the Chess clo counts the hundredth seconds for ea player, if he has control. To create
a Blitzess (5 minutes per person) goal and terminal relations are added.

(<= terminal

(true (chessclock ?player ?time))

(greater:greaterthan ?time 30000)

)

(<= (goal ?opp 100)

(true (chessclock ?player ?time))

(greater:greaterthan ?time 30000)

(opposite ?player ?opp)

)

37

With this simple extension a real Chess clo is added to the Chess game. Ea player now
can count his own time and act faster or slower accordingly. When a player does not have
the control, he simply has no legal move and therefore does nothing. is is not legal in
round-based games, but, however, in realtime games.

4.4 Discussion

As shown the WDL can describe a mu larger range of games than the GDL. However,
WDL syntax is in most cases equal to the GDL, so persons used to the GDL will really fast
understand the new concepts. Even the most player programs for GDL will be able to play
WDL games with random events and incomplete information, since the player does not really
notice the new features.
Incomplete information is completely hidden from the players. ey simply get the infor-

mation they should know.
All random events are handled by the WorldController. e moves of the players can

simply reasoned from GDL players, because they only include random variables, whi are
handled like terms.
Also the library system is designed to be handled by the server and not alter the player

behavior. All what is done, is done by the WorldController, so the players do not need to
know about the include statement at all.
ese are the reasons why current GDL players are in most cases able to play WDL games.

Since GDL is widely used today this was a design goal from the beginning and is aieved by
not altering any GDL concept more than necessary. e examples Bagammon and Bla
Ja are also examples of WDL games, whi are understood by GDL players. Of course the
AI should know about the random events to perform beer moves, but in fact that is not
necessary.
An exception is the realtime extension. Since the communication protocol is altered, the

players must know about that. Nevertheless the protocol and behavior is only altered slightly,
so this is not a big modification of the GDL structure.
Another design goal was to keep the new relations as abstract as possible. e random

relation only does random events, not dicing or shuffling or su concrete actions. As shown
with Bagammon and Bla Ja several different concrete game concepts can realized with
the random relation. at is a big advantage over the RGL or the EGGM, whi has too
specific statements. For implementation of classic games that might be easier, but for more
unconventional games the abstract concept fits beer.
In addition the library functionality helps to create games faster and less error-prone. Many

concepts are used over a big range of games, su as arithmetic functionality, dices or card-
des. Although only three examples are osen for this thesis, su features could moved to
a small library and used over all these games.
With the visible statement not only incomplete information can be realized, also commu-

nication between players are possible to model. A player performs a move, whi sets data,
visible for only one player or a range of players. is could be interesting in realtime games,
where agents move around autonomously and communicate with ea other.

38

Another advantage over other languages, su as EGGM or Zillions of Games is the avail-
ability of an open source framework. With that everyone is able to develop and test its players
and let them play against ea other.

39

Chapter 5

Conclusion and Future Work

With the WDL there is a new language available to describe games, whi exceeds the ca-
pabilities of all previous languages. e possibility of describing realtime games is unique
for game description languages. e library system makes the WDL very flexible. With a
standard library it would be possible to rapidly develop new games, whi are more readable
and understandable.
Nevertheless there are some points, whi should be aieved in future work. In the real-

time mode there is no possibility to force players to do something. At worst all players could
do simply nothing. In some games there could be scenarios where forcing players to perform
a move is necessary. Together with the random restriction it is not possible to force random
events to happen at a specific point. All clo controlled events have to be deterministic.
Another point is the bad arithmetic support of the WDL. Although arithmetic functionality

can easily described in libraries, they are not really fast. A big problem is the absence of
a number-definition. All numbers have to defined by hand in successor relations. Many
games need arithmetic functions and numbers - even rational numbers, to describe points
and relations between players. At this point this increases the size of libraries a lot, because
every single number must be defined. Including numbers to the WDL would help developing
games a lot.
So there are some minor updates for the WDL whi would increase its advantage.
A language for game description is useless without AIs playing these games. At the Freie

Universität Berlin, there are two projects related to the WDL. e first one is Maskin Leke
(Norwegian for Playing Maine), a WDL playing AI, the second one is Verden (Norwegian
for World), a framework for building games in WDL and building agents for them.

5.1 Maskin Leke

Maskin Leke is the AI for WDL games, whi is currently under development at the Freie
Universität Berlin. e goal is to get a strong AI, whi is not only able to play and win
almost every game, but to understand the rules.
Most modern GGP-AIs use Monte Carlo methods to aieve good results [5, 6]. is meth-

ods use statistical reasons tooosemoves in a game. Hundreds of games are played randomly
until they end. Aer that the move leading to the most wins is osen. ere are also some
improvements, like the UCT algorithm [12].

40

Although they perform well, they do not really understand the problem, but handle them
only with pure compute power [4]. e goal of the Maskin Leke team is to get a computer
understand the rules of the game and therefore perform well, instead of winning through
beer computing power. New approaes are needed for that goal.
e most important function is a evaluation function generator. A good feature generator

is needed to get a reliable evaluation function. A first idea is to adjust a feature generator
like the Zenith system of Fawce to WDL games [26]. ey find features by reason about
the rules. is may be to slow for a typical WDL game, but could be a good starting point.
e importance of these features must then be learned with maine learning approaes like
reinforcement learning or neuronal networks [2, 20].
It might be a good approa to implement different AI methods and learn whi concept

fits to whi kind of game. Games must be clustered for this idea. Paern recognition must
then applied to the rules of the game, and an AI decides whi concept is used by finding
similarities to other games played before.
Paern recognition also can applied to game states, whi had lead to a victory, and it can

be tried to find similarities in that states, whi can lead to new features.

5.2 Verden
Another project directly related to the WDL is Verden, whi aims to be a framework around
the WDL. Verden should first include a library for WDL games, whi covers the most im-
portant game concept as well as arithmetic functionality. With this library it will be possible
to fasten the game development with WDL a lot.
Verden should also consist of a graphical user interface for creating games inWDL. So users

from other domains than computer science will be able to develop games and systems inWDL.
is could be interesting for rapidly simulate economic or biologic systems and instantly have
AIs for these systems.
Additionally it should be possible to create agents for systems, where a human being can

simply add different AI concepts to an agent to specialize it for a particular job or generalize
it for a range of jobs and games.
With a accordant API a general AI platform could be created. Of course this is a big goal

whi can not be aieved in a short time.

41

References

[1] Kuli J., Blo M., Rojas R.: “General Game Playing mit stoastisen Spielen”, Te-
nical Report B-09-08, Freie Universität Berlin, 2009

[2] Blo M., Bader M., Tapia E., Ramírez M., Gunnarsson K., Cuevas E., Zaldivar D., Rojas
R.: “Using Reinforcement Learning in Chess Engines”, Concibe Science 2008, In Journal
Resear in Computing Science: Special Issue in Electronics and Biomedical Engineer-
ing, Computer Science and Informatics, Vol.35, pp.31-40, 2008

[3] Love N., Hinris T., Haley D., Skufza E., Genesereth M.: “General Game Playing:
Game Description Language Specication”, Stanford Logic Group Computer Science De-
partment Stanford University, Tenical Report LG-2006-01, 2008

[4] Bader M.: “Eine allgemeine selbstlernende Strategie für nit-kooperative Spiele”,
Diploma-esis at the Freie Universität Berlin, 2008

[5] Holt A.: ”General Game Playing Systems”, M.Sc. esis, Tenical University of Den-
mark, 2008

[6] Finnson H.: “CADIA-Player: A General Game Playing Agent”, M.Sc. esis, Reykjavik
University, 2007

[7] Saeffer J., Bur N., Bjornsson Y., Kishimoto A., Muller M., Lake R., Lu P., Sutphen S.:
“Cheers is Solved”, Magazin Science, Vol.317, No.5844, pp. 1518-1522, 2007

[8] Quenault M., Cazenave T.: “Extended General Gaming Model”, In Computer Games
Workshop, pp. 195-204, 2007

[9] Kaiser D.: “e Structure of Games”, Dissertation at the Florida International University,
2007

[10] Kurbel K.: “Entwilung und Einsatz von Expertensystemen: Eine anwendungsorien-
tierte Einführung in wissensbasierte Systeme”, ISBN: 978-3540552376, Springer Verlag,
2007

[11] Billings D.: “Algorithms and Assessment in Computer Poker”, Dissertation of the Uni-
versity of Alberta/Kanada, 2006

[12] Gelly S., Wang Y.: ”Exploration exploitation in Go: UCT for Monte-Carlo Go”, In NIPS:
Neural Information Processing Systems Conference On-line trading of Exploration and
Exploitation Workshop, 2006

42

[13] Blo M.: “Verwendung von Temporale-Differenz-Methoden im Samotor FUSc#”,
Diploma-esis at the Freie Universität Berlin, 2004

[14] Rojas R., Göktekin C., Friedland G., Krüger M., Sarf L.: “Konrad Zuses Plankalkül
Seine Genese und eine moderne Implementierung “, Freie Universität Berlin, 2002

[15] Campbell M., Hoane A., Hsu F.: “Deep Blue” , Artificial Intelligence, 2002

[16] Bratko I.: ”PROLOG Programming for Artificial Intelligence”, 3rd Edition, ISBN:
0201403757, Pearson Verlag 2001

[17] van der Werf E.: “AI teniques for the game of Go”, Dissertation at the Universiteit
Maastrit, 2004

[18] Tesauro G.: “Comparison Training of Chess Evaluation Functions”, In: Maines that
learn to play games, ISBN:1-59033-021-8, Nova Science Publishers, pp.117 - 130, 2001

[19] Romein J., Bal H., Grune D.: “e Multigame Reference Manual”, Tenical Report IR-
475, Vrije Universiteit, Amsterdam, 2000

[20] Rojas R.: “Neuronal Networks”, ISBN: 3540605053, Springer Verliag, 1996.

[21] Romein J., Bal H., Grune D.: “Multigame - A Very High Level Language for Describing
Board Games”, First Annual ASCI Conference, 1995

[22] Gadegast F.: ”TCP/IP-basierte Dienste zur Speierung von Multimedia-Daten”,
Diploma-esis at the Tenise Universität Berlin, 1995

[23] Pell B.: ”Strategy Generation and Evaluation for Meta-Game Playing”, Dissertation at
the Trinity College, 1993

[24] Pell B.: “Metagame in Symmetric, Chess-Like Games.”, In van den Herik H. and Allis L.
eds.: Heuristic Programming in Artificial Intelligence 3 -eird Computer Olympiad,
Ellis Horwood, 1992

[25] Genesereth M., Fikes R., et al.: “Knowledge Interange Format - Version 3.0 Refer-
ence Manual”, Stanford Logic Group Computer Science Department Stanford Univer-
sity, Tenical Report Logic-92-1, 1992

[26] Fawce T., Utgoff P.: “Automatic feature generation for problem solving systems.”
COINS Tenical Report 92-9, University of Massauses, 1992.

[27] Merri D.: “Building Expert Systems in Prolog”, ISBN: 0387970169, Springer Verlag, 1989

[28] Pitrat J.: “Realization of a general game-playing program”, IFIP Congress (2), pp.1570-
1574, 1968

[29] Nash J.F.: “Non-cooperative Games”, Dissertation at the Princeton University, 1950

43

[30] von Neumann J., Morgenstern O.: “eory of Games and Economic Behavior”, ISBN:
0691130612, Prinction University Press, 1944

[31] Website of the GGP-Group of the Freie Universität Berlin:
http://gameai.mi.fu-berlin.de/ggp/index.html

[32] Website of the GGP-Group of the Tenise Universität Dresden:
http://www.general-game-playing.de

[33] Website of the GGP-Group of the University of Stanford:
http://games.stanford.edu

[34] Website of the GIGA 2009:
http://www2.ru.is/faculty/yngvi/GIGA09/

[35] Website of Zillions of Games:
http://www.zillions-of-games.com

All mentioned weblinks were valid on September 21, 2009.

44

http://gameai.mi.fu-berlin.de/ggp/index.html
http://www.general-game-playing.de
http://games.stanford.edu
http://www2.ru.is/faculty/yngvi/GIGA09/
http://www.zillions-of-games.com

Appendix A

Games in WDL

A.1 e Library

Some functionality is moved to a small library. is library is shown here.

A.1.1 Dicing

(random dice 1 1)

(random dice 1 2)

(random dice 1 3)

(random dice 1 4)

(random dice 1 5)

(random dice 1 6)

A.1.2 Cardde

; Define Cards

(card sa spades ace)

(card sk spades king)

(card sq spades queen)

(card sj spades jack)

(card st spades 10)

(card s9 spades 9)

(card s8 spades 8)

(card s7 spades 7)

(card s6 spades 6)

(card s5 spades 5)

(card s4 spades 4)

(card s3 spades 3)

(card s2 spades 2)

(card da diamonds ace)

(card dk diamonds king)

(card dq diamonds queen)

(card dj diamonds jack)

45

(card dt diamonds 10)

(card d9 diamonds 9)

(card d8 diamonds 8)

(card d7 diamonds 7)

(card d6 diamonds 6)

(card d5 diamonds 5)

(card d4 diamonds 4)

(card d3 diamonds 3)

(card d2 diamonds 2)

(card ca clubs ace)

(card ck clubs king)

(card cq clubs queen)

(card cj clubs jack)

(card ct clubs 10)

(card c9 clubs 9)

(card c8 clubs 8)

(card c7 clubs 7)

(card c6 clubs 6)

(card c5 clubs 5)

(card c4 clubs 4)

(card c3 clubs 3)

(card c2 clubs 2)

(card ha hearts ace)

(card hk hearts king)

(card hq hearts queen)

(card hj hearts jack)

(card ht hearts 10)

(card h9 hearts 9)

(card h8 hearts 8)

(card h7 hearts 7)

(card h6 hearts 6)

(card h5 hearts 5)

(card h4 hearts 4)

(card h3 hearts 3)

(card h2 hearts 2)

; card relations

(succ 2 3)

(succ 3 4)

(succ 4 5)

(succ 5 6)

(succ 6 7)

(succ 7 8)

(succ 8 9)

(succ 9 10)

46

(succ 10 jack)

(succ jack queen)

(succ queen king)

(succ king ace)

A.1.3 Arithmetic Functionality

(include successor)

(<= (greaterthan ?x ?y)

(successor:++ ?y ?x))

(<= (greaterthan ?x ?y)

(successor:++ ?z ?x)

(greaterthan ?z ?y))

(<= (plus ?num 1 ?result)

(successor:++ ?num ?result)

)

(<= (plus 1 ?num ?result)

(successor:++ ?num ?result)

)

(<= (plus ?one ?two ?result)

(successor:++ ?twodec ?two)

(successor:++ ?one ?oneinc)

(plus ?oneinc ?twodec ?result)

)

(<= (minus ?one ?two ?result)

(plus ?result ?two ?one)

)

A.2 Bagammon

;;;

; Backgammon (classic rules)

;;;

; Some includes

(include dicing)

(include greater)

(include plus)

(include successor)

; Backgammon has two players

(role black)

(role white)

47

; The Startpositions have the following format:

; (point <POINTNR> <WHITE_PIECES> <BLACK_PIECES>)

(init (point 1 2 0))

(init (point 2 0 0))

(init (point 3 0 0))

(init (point 4 0 0))

(init (point 5 0 0))

(init (point 6 0 5))

(init (point 7 0 0))

(init (point 8 0 3))

(init (point 9 0 0))

(init (point 10 0 0))

(init (point 11 0 0))

(init (point 12 5 0))

(init (point 13 0 5))

(init (point 14 0 0))

(init (point 15 0 0))

(init (point 16 0 0))

(init (point 17 3 0))

(init (point 18 0 0))

(init (point 19 5 0))

(init (point 20 0 0))

(init (point 21 0 0))

(init (point 22 0 0))

(init (point 23 0 0))

(init (point 24 0 2))

;No pieces are out or on the bar in the beginning

(init (bar black 0))

(init (bar white 0))

(init (out black 0))

(init (out white 0))

;;;

; The game starts in the Pre-Start phase

;;;

(init (phase prestart))

; always keep the points

(<= (next (point ?number ?black ?white))

(true (point ?number ?black ?white))

(not (true (phase black move 1)))

(not (true (phase black move 2)))

48

(not (true (phase white move 1)))

(not (true (phase white move 2)))

)

; don’t keep numbers for playerd points

(<= (next (point ?number ?black ?white))

(true (point ?number ?black ?white))

(true (phase ?player move ?i))

(does ?player (move ?from ?to ?j))

(distinct ?number ?from)

(distinct ?number ?to)

)

; keep bars

(<= (next (bar ?opp ?value))

(does ?player (move ?from ?to ?i))

(opposite ?player ?opp)

(getpieces ?to ?opp 0)

(true (bar ?opp ?value))

)

(<= (next (bar ?opp ?value))

(does ?player (move 25 25 ?i))

(opposite ?player ?opp)

(true (bar ?opp ?value))

)

(<= (next (bar ?player ?value))

(true (phase ?player move ?i))

(does ?player (move ?from ?to ?j))

(distinct ?from 0)

(true (bar ?player ?value))

)

(<= (next (bar ?player ?value))

(true (bar ?player ?value))

(not (true (phase white move 1)))

(not (true (phase white move 2)))

(not (true (phase black move 1)))

(not (true (phase black move 2)))

)

;;;

; In the pre-start phase each player rolls a dice. The one with

; the bigger result begins.

;;;

(<= (legal ?player (roll dicing:dice))

(true (phase prestart))

)

; switch phase

49

(<= (next (phase getstarter))

(true (phase prestart))

)

; save values of the dice

(<= (next (rollvalue ?player ?dice))

(does ?player (roll ?dice))

(true (phase prestart))

)

; players have to wait

(<= (legal ?player noop)

(true (phase getstarter))

)

; get the bigger dice value and give control to according player

; (he must not dice again)

(<= (next (phase ?playerone move 1)) ; For player phases see below

(true (phase getstarter))

(true (rollvalue ?playerone ?diceone))

(opposite ?playerone ?playertwo)

(true (rollvalue ?playertwo ?dicetwo))

(greater:greaterthan ?diceone ?dicetwo)

)

(<= (next (phase prestart)) ; For the same result roll dices again

(true (phase getstarter))

(true (rollvalue ?playerone ?dice))

(opposite ?playerone ?playertwo)

(true (rollvalue ?playertwo ?dice))

)

; save dice values

(<= (next (firstroll ?value))

(true (phase getstarter))

(true (rollvalue black ?value))

)

(<= (next (secondroll ?value))

(true (phase getstarter))

(true (rollvalue white ?value))

)

; if it is not your turn, do nothing

(<= (legal ?opp noop)

(true (phase ?player ?x))

(opposite ?player ?opp)

)

(<= (legal ?opp noop)

(true (phase ?player move ?x))

(opposite ?player ?opp)

50

)

;;;

;Each player has four things to do in his turn (player phases):

; 1. Roll the first dice

; 2. Roll the second dice

; 3. Move the first piece

; 4. Move the second piece (could be the same)

;There could be two things more if both dice show the same result:

; 5./6. Move the third and forth piece

;;;

; phase 1

;;;

(<= (legal ?player (roll dicing:dice))

(true (phase ?player 1))

)

(<= (next (phase ?player 2))

(true (phase ?player 1))

)

(<= (next (firstroll ?value))

(does ?player (roll ?value))

(true (phase ?player 1))

)

;;;

; phase 2

;;;

(<= (legal ?player (roll dicing:dice))

(true (phase ?player 2))

)

(<= (next (phase ?player move 1))

(true (phase ?player 2))

)

(<= (next (secondroll ?value))

(does ?player (roll ?value))

(true (phase ?player 2))

)

(<= (next (firstroll ?value))

(true (phase ?player 2))

(true (firstroll ?value))

)

(<= (next (pair ?value))

(true (firstroll ?value))

(does ?player (roll ?value))

)

;;;

51

; phase 3-6

; normal move

;;;

; white goes forward...

(<= (legal white (move ?from ?to first))

(true (phase white move ?u))

(true (bar white 0))

(getpieces ?from white ?num)

(greater:greaterthan ?num 0)

(true (firstroll ?step))

(plus:plus ?from ?step ?to)

(getpieces ?to black ?oppnum)

(greater:greaterthan 2 ?oppnum)

)

(<= (legal white (move ?from ?to second))

(true (phase white move ?i))

(true (bar white 0))

(getpieces ?from white ?num)

(greater:greaterthan ?num 0)

(true (secondroll ?step))

(plus:plus ?from ?step ?to)

(getpieces ?to black ?oppnum)

(greater:greaterthan 2 ?oppnum)

)

; input pieces on the bar

(<= (legal white (move 0 ?to first))

(true (phase white move ?u))

(true (bar white ?value))

(greater:greaterthan ?value 0)

(true (firstroll ?step))

(plus:plus 0 ?step ?to)

(getpieces ?to black ?oppnum)

(greater:greaterthan 2 ?oppnum)

)

(<= (legal white (move 0 ?to second))

(true (phase white move ?i))

(true (bar white ?value))

(greater:greaterthan ?value 0)

(true (secondroll ?step))

(plus:plus 0 ?step ?to)

(getpieces ?to black ?oppnum)

(greater:greaterthan 2 ?oppnum)

)

; do nothing if there are no legal moves

52

(<= (legal white (move 25 25 first))

(true (phase white move 1))

(true (bar white ?value))

(greater:greaterthan ?value 0)

(true (firstroll ?step))

(plus:plus 0 ?step ?to)

(true (secondroll ?steptwo))

(plus:plus 0 ?steptwo ?totwo)

(getpieces ?to black ?oppnum)

(greater:greaterthan ?oppnum 2)

(getpieces ?totwo black ?oppnumtwo)

(greater:greaterthan ?oppnumtwo 2)

)

(<= (legal white (move 25 25 second))

(true (phase white move 2))

(true (bar white ?value))

(greater:greaterthan ?value 0)

(true (secondroll ?steptwo))

(plus:plus 0 ?steptwo ?totwo)

(getpieces ?totwo black ?oppnumtwo)

(greater:greaterthan ?oppnumtwo 2)

)

(<= (legal white (move ?from out first))

(true (phase white move ?u))

(true (bar white 0))

(allhome white)

(getpieces ?from white ?num)

(greater:greaterthan ?num 0)

(true (firstroll ?step))

(plus:plus ?from ?step ?to)

(greater:greaterthan ?to 24)

)

(<= (legal white (move ?from out second))

(true (phase white move ?i))

(true (bar white 0))

(allhome white)

(getpieces ?from white ?num)

(greater:greaterthan ?num 0)

(true (secondroll ?step))

(plus:plus ?from ?step ?to)

(greater:greaterthan ?to 24)

)

; black backwards

(<= (legal black (move ?from ?to first))

53

(true (phase black move ?u))

(true (bar black 0))

(getpieces ?from black ?num)

(greater:greaterthan ?num 0)

(true (firstroll ?step))

(plus:minus ?from ?step ?to)

(getpieces ?to white ?oppnum)

(greater:greaterthan 2 ?oppnum)

)

(<= (legal black (move ?from ?to second))

(true (phase black move ?i))

(true (bar black 0))

(getpieces ?from black ?num)

(greater:greaterthan ?num 0)

(true (secondroll ?step))

(plus:minus ?from ?step ?to)

(getpieces ?to white ?oppnum)

(greater:greaterthan 2 ?oppnum)

)

; input pieces on the bar

(<= (legal black (move 0 ?to first))

(true (phase black move ?u))

(true (bar black ?value))

(greater:greaterthan ?value 0)

(true (firstroll ?step))

(plus:minus 25 ?step ?to)

(getpieces ?to white ?oppnum)

(greater:greaterthan 2 ?oppnum)

)

(<= (legal black (move 0 ?to second))

(true (phase black move ?i))

(true (bar black ?value))

(greater:greaterthan ?value 0)

(true (secondroll ?step))

(plus:minus 25 ?step ?to)

(getpieces ?to white ?oppnum)

(greater:greaterthan 2 ?oppnum)

)

; do nothing if there are no legal moves

(<= (legal black (move 25 25 first))

(true (phase black move 1))

(true (bar black ?value))

(greater:greaterthan ?value 0)

(true (firstroll ?step))

54

(plus:minus 25 ?step ?to)

(true (secondroll ?steptwo))

(plus:minus 25 ?steptwo ?totwo)

(getpieces ?to white ?oppnum)

(greater:greaterthan ?oppnum 2)

(getpieces ?totwo white ?oppnumtwo)

(greater:greaterthan ?oppnumtwo 2)

)

(<= (legal black (move 25 25 second))

(true (phase black move 2))

(true (bar black ?value))

(greater:greaterthan ?value 0)

(true (secondroll ?steptwo))

(plus:minus 25 ?steptwo ?totwo)

(getpieces ?totwo white ?oppnumtwo)

(greater:greaterthan ?oppnumtwo 2)

)

; move pieces out

(<= (legal black (move ?from out first))

(true (phase black move ?u))

(true (bar black 0))

(allhome black)

(getpieces ?from black ?num)

(greater:greaterthan ?num 0)

(true (firstroll ?step))

(plus:minus ?from ?step ?to)

(greater:greaterthan 0 ?to)

)

(<= (legal black (move ?from out second))

(true (phase black move ?i))

(true (bar black 0))

(allhome black)

(getpieces ?from black ?num)

(greater:greaterthan ?num 0)

(true (secondroll ?step))

(plus:minus ?from ?step ?to)

(greater:greaterthan 0 ?to)

)

(<= (next (phase ?player move 2))

(true (phase ?player move 1))

(not (does ?player noop))

)

(<= (next (phase ?opp 1))

(true (phase ?player move 2))

55

(opposite ?player ?opp)

(does ?player noop)

)

(<= (next (pair ?value))

(true (phase ?player move 1))

(true (pair ?value))

)

(<= (next (firstroll ?value))

(does ?player (move ?from ?to second))

(true (phase ?player move 1))

(true (firstroll ?value))

)

(<= (next (secondroll ?value))

(does ?player (move ?from ?to first))

(true (phase ?player move 1))

(true (secondroll ?value))

)

; Decrement old position

(<= (next (point ?from 0 ?black))

(does black (move ?from ?to ?i))

(true (point ?from ?white ?oldblack))

(successor:++ ?black ?oldblack)

)

(<= (next (point ?from ?white 0))

(does white (move ?from ?to ?i))

(true (point ?from ?oldwhite ?black))

(successor:++ ?white ?oldwhite)

)

(<= (next (bar ?player ?value))

(does ?player (move 0 ?to ?i))

(true (bar ?player ?oldvalue))

(successor:++ ?value ?oldvalue)

)

; Increment new position

(<= (next (point ?to 0 ?black))

(does black (move ?from ?to ?i))

(true (point ?to ?white ?oldblack))

(successor:++ ?oldblack ?black)

)

(<= (next (point ?to ?white 0))

(does white (move ?from ?to ?i))

(true (point ?to ?oldwhite ?black))

(successor:++ ?oldwhite ?white)

)

56

; Increment or keep outs

(<= (next (out ?player ?value))

(does ?player (move ?from out ?i))

(true (out ?player ?oldvalue))

(successor:++ ?oldvalue ?value)

)

(<= (next (out ?player ?value))

(does ?player (move ?from ?to ?i))

(distinct out ?to)

(true (out ?player ?value))

)

(<= (next (out ?player ?value))

(not (true (phase black move 1)))

(not (true (phase black move 2)))

(not (true (phase white move 1)))

(not (true (phase white move 2)))

(true (out ?player ?value))

)

(<= (next (out ?player ?value))

(true (phase ?opp move ?i))

(opposite ?player ?opp)

(true (out ?player ?value))

)

; increment bars

(<= (next (bar ?opp ?value))

(does ?player (move ?from ?to ?i))

(opposite ?player ?opp)

(getpieces ?to ?opp 1)

(true (bar ?opp ?oldvalue))

(successor:++ ?oldvalue ?value)

)

(<= (next (phase ?player move 1))

(true (phase ?player move 2))

(true (pair ?value))

)

(<= (next (firstroll ?value))

(true (phase ?player move 2))

(true (pair ?value))

)

(<= (next (secondroll ?value))

(true (phase ?player move 2))

(true (pair ?value))

)

(<= (next (phase ?opp 1))

57

(true (phase ?player move 2))

(opposite ?player ?opp)

(not (true (pair 1)))

(not (true (pair 2)))

(not (true (pair 3)))

(not (true (pair 4)))

(not (true (pair 5)))

(not (true (pair 6)))

)

;;;

; goals

;;;

; backgammon

(<= (goal ?player 100)

(opposite ?player ?opp)

(true (bar ?opp ?value))

(greater:greaterthan 0 ?value)

(true (out ?player 15))

)

; gammon

(<= (goal ?player 66)

(opposite ?player ?opp)

(true (out ?opp 0))

(true (out ?player 15))

)

; single game

(<= (goal ?player 33)

(opposite ?player ?opp)

(true (out ?opp ?value))

(greater:greaterthan 0 ?value)

(true (bar ?opp 0))

(true (out ?player 15))

)

;;;

;Functions:

;;;

; get opposite player

(opposite black white)

(opposite white black)

; get number of pieces on a position

(<= (getpieces ?pos white ?value)

(true (point ?pos ?value ?x))

)

(<= (getpieces ?pos black ?value)

58

(true (point ?pos ?x ?value))

)

; All pieces in home board

(<= (allhome black)

(true (bar black 0))

(true (point 24 ?i 0))

(true (point 23 ?i 0))

(true (point 22 ?i 0))

(true (point 21 ?i 0))

(true (point 20 ?i 0))

(true (point 19 ?i 0))

(true (point 18 ?i 0))

(true (point 17 ?i 0))

(true (point 16 ?i 0))

(true (point 15 ?i 0))

(true (point 14 ?i 0))

(true (point 13 ?i 0))

(true (point 12 ?i 0))

(true (point 11 ?i 0))

(true (point 10 ?i 0))

(true (point 9 ?i 0))

(true (point 8 ?i 0))

(true (point 7 ?i 0))

)

(<= (allhome white)

(true (bar white 0))

(true (point 17 0 ?i))

(true (point 16 0 ?i))

(true (point 15 0 ?i))

(true (point 14 0 ?i))

(true (point 13 0 ?i))

(true (point 12 0 ?i))

(true (point 11 0 ?i))

(true (point 10 0 ?i))

(true (point 9 0 ?i))

(true (point 8 0 ?i))

(true (point 7 0 ?i))

(true (point 6 0 ?i))

(true (point 5 0 ?i))

(true (point 4 0 ?i))

(true (point 3 0 ?i))

(true (point 2 0 ?i))

(true (point 1 0 ?i))

)

59

A.3 Bla Ja

;;;

; Black Jack (simple rules)

;;;

; we need a carddeck

(include carddeck)

(include greater)

(include plus)

; We have only two players

(role bank)

(role player)

; in the beginning cards are dealt

(init (phase deal 1 bank))

(init (points bank 0))

(init (points player 0))

; card points

(value carddeck:ace 11)

(value carddeck:king 10)

(value carddeck:queen 10)

(value carddeck:jack 10)

(value 10 10)

(value 9 9)

(value 8 8)

(value 7 7)

(value 6 6)

(value 5 5)

(value 4 4)

(value 3 3)

(value 2 2)

; It’s always legal to wait, when it’s not your turn

(<= (legal ?other wait)

(true (phase deal ?x ?player))

(opposite ?player ?other)

)

(<= (legal ?other wait)

(true (phase play ?player))

(opposite ?player ?other)

)

;;;

; in the dealing phase players get two cards

(<= (legal ?player (get (visible ?player getcard)))

(true (phase deal ?x ?player))

)

60

(<= (random getcard 0 ?card)

(true (hascard ?player ?color ?value))

(carddeck:card ?card ?color ?value)

)

(<= (random getcard 1 ?card)

(carddeck:card ?card ?color ?value)

(not (true (hascard ?player ?color ?value)))

)

; save dealt cards

(<= (next (hascard ?player ?color ?value))

(does ?player (get ?card))

(carddeck:card ?card ?color ?value)

)

(<= (next (hascard ?player ?color ?value))

(true (hascard ?player ?color ?value))

)

; compute and update points of players

(<= (next (points ?player ?points))

(does ?player (get ?card))

(carddeck:card ?card ?color ?value)

(value ?value ?newpoints)

(true (points ?player ?oldpoints))

(plus:plus ?oldpoints ?newpoints ?points)

)

(<= (next (points ?player ?value))

(true (points ?player ?value))

(does ?player (wait))

)

(<= (next (points ?player ?value))

(true (points ?player ?value))

(does ?player (finish))

)

; Carddealing phase-order

(<= (next (phase deal 1 player))

(true (phase deal 1 bank))

)

(<= (next (phase deal 2 bank))

(true (phase deal 1 player))

)

(<= (next (phase deal 2 player))

(true (phase deal 2 bank))

)

(<= (next (phase play player))

(true (phase deal 2 player))

61

)

;;;

; Play phase

(<= (legal ?player (get (visible ?player getcard)))

(true (phase play ?player))

(true (points ?player ?value))

(greater:greaterthan 22 ?value)

)

(<= (legal ?player finish)

(true (phase play ?player))

)

; The opponent only gets a ’get’ move

(<= (next (phase play ?player))

(true (phase play ?player))

(does ?player (get))

)

(<= (next (phase play ?player))

(true (phase play ?player))

(does ?player (get ?card))

)

(<= (next (phase play bank))

(does player (finish))

)

(<= (next (finished))

(does bank (finish))

)

; send the points (because they are invisible to the opponent)

(<= (legal ?player (send ?mypoints))

(true (finished))

(true (points ?player ?mypoints))

)

(<= (next (points ?player ?points))

(does ?player (send ?points))

)

(<= (next (done))

(does ?player (send ?points))

)

;;;

; Goals

; 1. The one wich has more points wins, when he has less than 22

(<= (goal ?player 100)

(true (points ?player ?playerpoints))

(opposite ?player ?opp)

(true (points ?opp ?opppoints))

62

(greater:greaterthan ?playerpoints ?opppoints)

(greater:greaterthan 22 ?playerpoints)

)

; 2. One when he has less than 22 and the opponent has more than 21

(<= (goal ?player 100)

(true (points ?player ?playerpoints))

(opposite ?player ?opp)

(true (points ?opp ?opppoints))

(greater:greaterthan 22 ?playerpoints)

(greater:greaterthan ?opppoints 21)

)

; If both players have the same points, the bank wins

(<= (goal bank 100)

(true (points bank ?playerpoints))

(true (points player ?playerpoints))

(greater:greaterthan 22 ?playerpoints)

)

; If one player has more then 21 points he looses the game

(<= (goal ?player 0)

(true (points ?player ?playerpoints))

(greater:greaterthan ?playerpoints 21)

)

; Get a terminal state

(<= terminal

(true (done))

)

; get the opponent player

(opposite bank player)

(opposite player bank)

63

	Introduction and Motivation
	Structure of the Thesis

	Theory and Related Work
	Expertsystems and Uncertainty
	Early Approaches to General Game Playing
	Game Description Language
	Current Research

	Extensions to the GDL: The World Description Language
	The Need of an Extension
	Probability Based Moves: The random relation
	Incomplete Information: The visible relation
	Realtime Systems: The realtime axiom
	Library functionality: The include relation

	Experimental Results and Discussion
	Backgammon
	Black Jack
	Chess Clock
	Discussion

	Conclusion and Future Work
	Maskin Leke
	Verden

	References
	Games in WDL
	The Library
	Dicing
	Carddeck
	Arithmetic Functionality

	Backgammon
	Black Jack

